SPLINE SMOOTHING IN REGRESSION-MODELS AND ASYMPTOTIC EFFICIENCY IN L2

被引:92
作者
NUSSBAUM, M
机构
关键词
D O I
10.1214/aos/1176349651
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:984 / 997
页数:14
相关论文
共 21 条
[11]   MINIMAXITY OF THE METHOD OF REGULARIZATION ON STOCHASTIC-PROCESSES [J].
LI, KC .
ANNALS OF STATISTICS, 1982, 10 (03) :937-942
[12]   OPTIMAL ESTIMATION OF A GENERAL REGRESSION FUNCTION [J].
MILLAR, PW .
ANNALS OF STATISTICS, 1982, 10 (03) :717-740
[13]  
RAO CR, 1973, LINEAR STATISTICAL I
[14]   SMOOTHING SPLINES - REGRESSION, DERIVATIVES AND DECONVOLUTION [J].
RICE, J ;
ROSENBLATT, M .
ANNALS OF STATISTICS, 1983, 11 (01) :141-156
[15]  
SACKS J, 1982, STATISTICAL DECISION, V2
[16]   SPLINE SMOOTHING AND OPTIMAL RATES OF CONVERGENCE IN NONPARAMETRIC REGRESSION-MODELS [J].
SPECKMAN, P .
ANNALS OF STATISTICS, 1985, 13 (03) :970-983
[17]   OPTIMAL GLOBAL RATES OF CONVERGENCE FOR NONPARAMETRIC REGRESSION [J].
STONE, CJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1040-1053
[18]   NATURAL SPLINE FUNCTIONS, THEIR ASSOCIATED EIGENVALUE PROBLEM [J].
UTRERAS, F .
NUMERISCHE MATHEMATIK, 1983, 42 (01) :107-117
[19]  
UTRERASDIAZ F, 1980, NUMER MATH, V34, P15
[20]  
WAHBA G, 1978, J ROY STAT SOC B MET, V40, P364