A NEW CLASS OF INTEGRABLE SYSTEMS AND ITS RELATION TO SOLITONS

被引:354
作者
RUIJSENAARS, SNM
SCHNEIDER, H
机构
关键词
D O I
10.1016/0003-4916(86)90097-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:370 / 405
页数:36
相关论文
共 45 条
[1]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[2]   A PARTICLE REPRESENTATION FOR KORTEWEG-DEVRIES SOLITONS [J].
BOWTELL, G ;
STUART, AEG .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (04) :969-981
[3]   INTERACTING SINE-GORDON SOLITONS AND CLASSICAL PARTICLES - DYNAMIC EQUIVALENCE [J].
BOWTELL, G ;
STUART, AEG .
PHYSICAL REVIEW D, 1977, 15 (12) :3580-3591
[4]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[5]   POLE EXPANSIONS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (02) :339-353
[6]  
CURRIE DG, 1968, LECTURES THEORETIC A, V10, P91
[7]  
Date E., 1982, PUBL RES I MATH SCI, V18, P1077
[8]  
Flaschka H., 1976, LECT NOTES MATH, V515, P253
[9]  
FLASCHKA H, 1975, LECTURE NOTES PHYSIC, V38, P355
[10]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458