A Recurrent Neural Multi-Model for Mechanical Systems Dynamics Compensation

被引:0
作者
Baruch, Ieroham [1 ]
Beltran, Rafael [1 ]
Garrido, Ruben [1 ]
Nenkova, Boyka [2 ]
机构
[1] CINVESTAV IPN, Dept Automat Control, Mexico City 07360, DF, Mexico
[2] Inst Informat Technol, Sofia 1113, Bulgaria
关键词
Recurrent neural networks; back propagation learning; fuzzy-neural multimodel; systems identification; adaptive control; mechanical system with backlash;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper proposed a new fuzzy-neural recurrent multi-model for systems identification and states estimation of complex nonlinear mechanical plants with backlash. The parameters and states of the local recurrent neural network models are used for a local direct and indirect adaptive control systems design. The designed local control laws are coordinated by a fuzzy rule based control system. Simulation results confirm the applicability of the proposed intelligent control system, where a good convergence of all recurrent neural networks, is obtained.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 25 条
[1]  
Baruch I, 2000, PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOL 1 AND 2, P700, DOI 10.1109/ISIE.2000.930383
[2]  
Baruch I., 1998, P AARTC IFAC WORKSH, P283
[3]  
BARUCH I, 1999, P 5 INT C ENG APPL N, P183
[4]  
Baruch I, 1998, P 5 INT S METH MOD A, V2, P624
[5]  
BARUCH I, 1999, P IASTED INT C MOD S, P1
[6]  
Baruch I. S., 2001, 2001 European Control Conference (ECC), P3540
[7]  
Baruch IS, 2004, LECT NOTES COMPUT SC, V2972, P774
[8]  
Baruch IS, 2002, 2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, P289, DOI 10.1109/IS.2002.1044270
[9]  
Baruch IS, 2001, IEEE IJCNN, P1291, DOI 10.1109/IJCNN.2001.939547
[10]  
Baruch IS, 2000, LECT NOTES ARTIF INT, V1904, P292