WEIGHTED SPACES OF HOLOMORPHIC 2 pi-PERIODIC FUNCTIONS ON THE UPPER HALFPLANE

被引:0
作者
Ardalani, Mohammad Ali [1 ]
Lusky, Wolfgang [2 ]
机构
[1] Univ Kurdistan, Fac Sci, Dept Math, Pasdaran Ave, Sanandaj 6617715175, Iran
[2] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词
weighted spaces; holomorphic periodic functions; halfplane; differentiation operators; composition operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider spaces of 2 pi-periodic holomorphic functions f on the upper halfplane G which are bounded by a weighted sup-norm sup wG vertical bar f (w)vertical bar v (w). Here v : G ->] 0, infinity[ is a function which depends essentially only on Im w, w is an element of G, and satisfies lim(t -> 0) v (it) = 0. We give a complete isomorphic classification of such spaces and investigate composition operators and the differentiation operator between them.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 15 条
[1]   BIDUALS OF WEIGHTED BANACH-SPACES OF ANALYTIC-FUNCTIONS [J].
BIERSTEDT, KD ;
SUMMERS, WH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 54 :70-79
[2]   Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions [J].
Bonet, J ;
Domanski, P ;
Lindström, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (02) :139-148
[3]  
Bonet J., 2003, COLECC ABIERTA, P117
[4]   HOMOGENEOUS POLYNOMIALS ON THE BALL AND POLYNOMIAL BASES [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (03) :327-347
[5]  
DOMANSKI P, 2002, ANN POL MATH, V79, P233, DOI 10.4064/ap79-3-3
[6]   On the boundedness of the differentiation operator between weighted spaces of holomorphic functions [J].
Harutyunyan, Anahit ;
Lusky, Wolfgang .
STUDIA MATHEMATICA, 2008, 184 (03) :233-247
[7]  
Holtmanns S., 2000, THESIS
[8]   ON WEIGHTED SPACES OF HARMONIC AND HOLOMORPHIC-FUNCTIONS [J].
LUSKY, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 :309-320
[9]   On the isomorphism classes of weighted spaces of harmonic and holomorphic functions [J].
Lusky, Wolfgang .
STUDIA MATHEMATICA, 2006, 175 (01) :19-45
[10]  
SHIELDS AL, 1982, MICH MATH J, V29, P3