ANALOG-DIGITAL SELF-LEARNING FUZZY SPIKING NEURAL NETWORK AND ITS LEARNING ALGORITHM BASED ON` WINNER-TAKES-MORE' RULE

被引:0
作者
Bodyanskiy, Ye. [1 ]
Dolotov, A. [1 ]
机构
[1] Kharkov Natl Univ Radio Elect, Kharkov, Ukraine
关键词
analog-digital architecture; self-learning fuzzy spiking neural network; automatic; control theory; unsupervised learning algorithm; 'winner-takes-more'; rule;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Analog-digital architecture of self-learning fuzzy spiking neural network is proposed in this paper. Spiking neuron synapse and some are treated in terms of classical automatic control theory. Conventional unsupervised learning algorithm of spiking neural network is improved by applying `Winner-Takes-More' rule.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 16 条
  • [1] Bezdek J., 2005, FUZZY MODELS ALGORIT
  • [2] Bodyanskiy Ye, 2008, WISSENSCHAFTLICHE BE, V100, P2360
  • [3] Bodyanskiy Ye, 2009, ADAPTIVE GUSTAFSON K, P17
  • [4] Bodyanskiy Ye, 2009, P INT C INT SYST DEC, V2, P154
  • [5] Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
    Bohte, SM
    La Poutré, H
    Kok, JN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02): : 426 - 435
  • [6] A STOCHASTIC-MODEL OF RETINOTOPY - A SELF-ORGANIZING PROCESS
    COTTRELL, M
    FORT, JC
    [J]. BIOLOGICAL CYBERNETICS, 1986, 53 (06) : 405 - 411
  • [7] Dolotov A., 2008, SCI P RIG TU INF TEC, V36, P27
  • [8] Gerstner W., 2002, SPIKING NEURON MODEL
  • [9] Haykin S., 1999, NEURAL NETWORKS COMP
  • [10] JANG JR, 1997, COMPUTATIONAL APPROA