THE CRITICAL FUNCTION FOR THE SEMISTANDARD MAP

被引:84
作者
DAVIE, AM
机构
[1] Department of Mathematics and Statistics, University of Edinburgh, Edinburgh, EH9 312, Kings Buildings, Mayfield Road
关键词
D O I
10.1088/0951-7715/7/1/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the semistandard map F(x, y) = (x + y + ie(ix), y + ie(ix)), we consider the critical function K(ss)(omega), defined as the radius of convergence of a series expansion of a complex invariant curve of rotation number omega, and show that log K(ss)(omega) + 2SIGMAq(k)-1 log q(k+1) is bounded on the set of omega where it is well-defined, where {q(k)} are the denominators of the convergents to the real number omega. We discuss the implications for critical functions for the standard map.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 16 条
[11]   CRITICAL FUNCTIONS FOR COMPLEX ANALYTIC-MAPS [J].
MARMI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15) :3447-3474
[12]   ON THE STANDARD MAP CRITICAL FUNCTION [J].
MARMI, S ;
STARK, J .
NONLINEARITY, 1992, 5 (03) :743-761
[13]   CHAOTIC BOUNDARY OF A HAMILTONIAL MAP [J].
PERCIVAL, IC .
PHYSICA D, 1982, 6 (01) :67-77
[14]   Iteration of analytic functions [J].
Siegel, CL .
ANNALS OF MATHEMATICS, 1942, 43 :607-612
[15]  
Wright E., 1979, INTRO THEORY NUMBERS
[16]  
[No title captured]