THE CRITICAL FUNCTION FOR THE SEMISTANDARD MAP

被引:84
作者
DAVIE, AM
机构
[1] Department of Mathematics and Statistics, University of Edinburgh, Edinburgh, EH9 312, Kings Buildings, Mayfield Road
关键词
D O I
10.1088/0951-7715/7/1/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the semistandard map F(x, y) = (x + y + ie(ix), y + ie(ix)), we consider the critical function K(ss)(omega), defined as the radius of convergence of a series expansion of a complex invariant curve of rotation number omega, and show that log K(ss)(omega) + 2SIGMAq(k)-1 log q(k+1) is bounded on the set of omega where it is well-defined, where {q(k)} are the denominators of the convergents to the real number omega. We discuss the implications for critical functions for the standard map.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 16 条
[1]  
Arrowsmith D. K., 1990, INTRO DYNAMICAL SYST
[2]   NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS [J].
BERRETTI, A ;
CELLETTI, A ;
CHIERCHIA, L ;
FALCOLINI, C .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1613-1630
[3]   ON THE COMPLEX ANALYTIC STRUCTURE OF THE GOLDEN INVARIANT CURVE FOR THE STANDARD MAP [J].
BERRETTI, A ;
CHIERCHIA, L .
NONLINEARITY, 1990, 3 (01) :39-44
[4]   CRITICAL FUNCTION AND MODULAR SMOOTHING [J].
BURIC, N ;
PERCIVAL, IC ;
VIVALDI, F .
NONLINEARITY, 1990, 3 (01) :21-37
[5]   INVARIANT CURVES FOR AREA-PRESERVING TWIST MAPS FAR FROM INTEGRABLE [J].
CELLETTI, A ;
CHIERCHIA, L .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :617-642
[6]  
DAVIE AM, 1993, UNPUB RENORMALIZATIO
[7]   NUMERICAL-CALCULATION OF DOMAINS OF ANALYTICITY FOR PERTURBATION THEORIES IN THE PRESENCE OF SMALL DIVISORS [J].
FALCOLINI, C ;
DELALLAVE, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :645-666
[8]   HAMILTONIAN MAPS IN THE COMPLEX-PLANE [J].
GREENE, JM ;
PERCIVAL, IC .
PHYSICA D, 1981, 3 (03) :530-548
[9]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[10]   LOCALLY MOST ROBUST CIRCLES AND BOUNDARY CIRCLES FOR AREA-PRESERVING MAPS [J].
MACKAY, RS ;
STARK, J .
NONLINEARITY, 1992, 5 (04) :867-888