Adaptive Phase Correction for Phase Measuring Deflectometry Based on Light Field Modulation

被引:0
作者
Niu, Zhenqi [1 ]
Zhang, Xiangchao [1 ]
Ye, Junqiang [1 ]
Ye, Lu [1 ]
Zhu, Rui [1 ]
Jiang, Xiangqian [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Engn Res Ctr Ultraprecis Opt Mfg, Shanghai 200438, Peoples R China
[2] Univ Huddersfield, Future Metrol Hub, Huddersfield HD1 3DH, W Yorkshire, England
基金
中国国家自然科学基金;
关键词
Light field; optical metrology; phase measuring deflectometry; point spread function; surface form;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The phase measuring deflectometry is a powerful measuring method for complex optical surfaces, which captures the reflected fringe images associated with a displaying screen and calculates the normal vectors of the surface under test (SUT) accordingly. The captured images are usually set conjugate to the SUT, which in turn makes the screen defocused. As a result, the blurring effect caused by the point spread function (PSF) of the off-axis catadioptric imaging system can bias the solved phases. In order to correct the phase errors, a light field is constructed based on the Fourier compressive sensing method to describe the light transmission between the screen and camera pixels. Fringe modulation is conducted to enhance the robustness against noise, and then, space-variant PSFs can be extracted from the light field. The true phases are obtained by solving a Wiener deconvolution problem, with the merit function adaptively regularized by adjusting the damping parameter. The proposed method can correct adaptively the phase errors induced by the complex aberrations. Compared to the reference measurements, the form accuracy can be improved by four times.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Programmable CGH on photochromic plates coded with DMD generated masks [J].
Alata, R. ;
Pariani, G. ;
Zamkotsian, F. ;
Lanzoni, P. ;
Bianco, A. ;
Bertarelli, C. .
OPTICS EXPRESS, 2017, 25 (06) :6945-6953
[2]   Principles of Shape from Specular Reflection [J].
Balzer, J. ;
Werling, S. .
MEASUREMENT, 2010, 43 (10) :1305-1317
[3]  
Brown M., 2006, IEEE C COMP VIS PATT, P1956
[4]  
Cai JF, 2009, PROC CVPR IEEE, P104, DOI 10.1109/CVPRW.2009.5206743
[5]   An Augmented Lagrangian Method for Total Variation Video Restoration [J].
Chan, Stanley H. ;
Khoshabeh, Ramsin ;
Gibson, Kristofor B. ;
Gill, Philip E. ;
Nguyen, Truong Q. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) :3097-3111
[6]   A Lightweight Appearance Quality Assessment System Based on Parallel Deep Learning for Painted Car Body [J].
Chang, Fei ;
Dong, Mingyu ;
Liu, Min ;
Wang, Ling ;
Duan, Yunqiang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (08) :5298-5307
[7]   Generic exponential fringe model for alleviating phase error in phase measuring profilometry [J].
Chen, Chao ;
Gao, Nan ;
Wang, Xiangjun ;
Zhang, Zonghua ;
Gao, Feng ;
Jiang, Xiangqian .
OPTICS AND LASERS IN ENGINEERING, 2018, 110 :179-185
[8]   High-Quality Computational Imaging through Simple Lenses [J].
Heide, Felix ;
Rouf, Mushfiqur ;
Hullin, Matthias B. ;
Labitzke, Bjorn ;
Heidrich, Wolfgang ;
Kolb, Andreas .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (05)
[9]   Zernike polynomials for mid-spatial frequency representation on optical surfaces [J].
Hosseinimakarem, Zahra ;
Davies, Angela D. ;
Evans, Chris J. .
REFLECTION, SCATTERING, AND DIFFRACTION FROM SURFACES V, 2016, 9961
[10]   Innovative focal plane design for large space telescope using freeform mirrors [J].
Jahn, Wilfried ;
Ferrari, Marc ;
Hugot, Emmanuel .
OPTICA, 2017, 4 (10) :1188-1195