FINITE-SAMPLE OPTIMALITY OF MAXIMUM PARTIAL LIKELIHOOD ESTIMATION IN COX MODEL FOR COUNTING-PROCESSES

被引:2
作者
CHANG, IS
HSIUNG, CA
机构
[1] NATL CENT UNIV,DEPT MATH,CHUNGLI,TAIWAN
[2] ACAD SINICA,INST STAT SCI,TAIPEI 115,TAIWAN
关键词
Estimating equation; Fisher information; martingales; nuisance parameter;
D O I
10.1016/0378-3758(90)90005-F
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Within the framework of estimating function theory, this paper adapts the concept of Fisher information in the presence of a nuisance parameter (Godambe and Thompson (1974), Godambe (1984)) to the context of Cox-type regression model, formulates its Godambe's optimality criterion, and establishes the optimality of the maximum partial likelihood estimation in Cox's model with respect to this criterion. © 1990.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 16 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[3]  
Bremaud P., 1981, POINT PROCESSES QUEU
[4]  
Cox D. R., 1980, POINT PROCESSES
[5]   PARTIAL LIKELIHOOD [J].
COX, DR .
BIOMETRIKA, 1975, 62 (02) :269-276
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]  
Elliott R.J., 1982, STOCHASTIC CALCULUS
[8]  
Gill R. D., 1980, MATH CTR TRACTS, V124
[9]  
GODAMBE VP, 1985, BIOMETRIKA, V72, P419
[10]   ESTIMATING EQUATIONS IN PRESENCE OF A NUISANCE PARAMETER [J].
GODAMBE, VP ;
THOMPSON, ME .
ANNALS OF STATISTICS, 1974, 2 (03) :568-571