LOCALLY HAMILTONIAN GRAPHS AND KURATOWSKI THEOREM

被引:0
|
作者
SKUPIEN, Z
机构
来源
BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES | 1965年 / 13卷 / 09期
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:615 / &
相关论文
共 50 条
  • [31] Forbidding Kuratowski Graphs as Immersions
    Giannopoulou, Archontia C.
    Kaminski, Marcin
    Thilikos, Dimitrios M.
    JOURNAL OF GRAPH THEORY, 2015, 78 (01) : 43 - 60
  • [32] A NOTE ON THE SONG-ZHANG THEOREM FOR HAMILTONIAN GRAPHS
    Zhao, Kewen
    Gould, Ronald J.
    COLLOQUIUM MATHEMATICUM, 2010, 120 (01) : 63 - 75
  • [33] LOCALLY HAMILTONIAN-SYSTEMS WITH SYMMETRY AND A GENERALIZED NOETHER THEOREM
    CARINENA, JF
    IBORT, LA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 87 (01): : 41 - 49
  • [34] Hamiltonian properties of locally connected graphs with bounded vertex degree
    Gordon, Valery S.
    Orlovich, Yury L.
    Potts, Chris N.
    Strusevich, Vitaly A.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1759 - 1774
  • [35] Nested Locally Hamiltonian Graphs and the Oberly-Sumner Conjecture
    De Wet, Johan P.
    Frick, Marietjie
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1281 - 1312
  • [36] Hamiltonian claw-free graphs with locally disconnected vertices
    Tian, Runli
    Xiong, Liming
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2042 - 2050
  • [37] On the hamiltonian-connectedness for graphs satisfying Ore's Theorem
    Shih, Yuan-Kang
    Su, Hsun
    Kao, Shin-Shin
    Smart Innovation, Systems and Technologies, 2013, 20 : 25 - 31
  • [38] A generalization of Tutte's theorem on Hamiltonian cycles in planar graphs
    Harant, Jochen
    Senitsch, Stefan
    DISCRETE MATHEMATICS, 2009, 309 (15) : 4949 - 4951
  • [39] The Lovasz-Cherkassky theorem for locally finite graphs with ends
    Jacobs, Raphael W.
    Joo, Attila
    Knappe, Paul
    Kurkofka, Jan
    Melcher, Ruben
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [40] The commuting local Hamiltonian problem on locally expanding graphs is approximable in NP
    Aharonov, Dorit
    Eldar, Lior
    QUANTUM INFORMATION PROCESSING, 2015, 14 (01) : 83 - 101