Tensor product of left polaroid operators

被引:0
作者
Boasso, Enrico
Duggal, Bhagwati P.
机构
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2012年 / 78卷 / 1-2期
关键词
Banach space; left polaroid operator; finitely left polaroid operator; tensor product; left-right multiplication; generalized a-Weyl's theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach space operator T is an element of B(X) is left polaroid if for each lambda is an element of iso sigma(a)(T) there is an integer d(lambda) such that asc(T - lambda) = d(lambda) < infinity and (T - lambda) d((lambda)+ 1) X is closed; T is finitely left polaroid if asc(T - lambda) < infinity, (T - lambda) infinity is closed and dim(T - lambda)(-1)(0) < infinity at each lambda is an element of iso sigma(a)(T). The left polaroid property transfers from A and B to their tensor product A circle times B, hence also from A and B* to the left-right multiplication operator T-AB, for Hilbert space operators; an additional condition is required for Banach space operators. The finitely left polaroid property transfers from A and B to their tensor product A circle times B if and only if 0 is not an element of iso sigma(a)(A circle times B); a similar result holds for T-AB for finitely left polaroid A and B*.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 16 条
[1]  
Aiena P., 2004, FREDHOLM LOCAL SPECT
[2]  
Aiena P, 2007, ACTA SCI MATH, V73, P251
[3]   On Drazin invertibility [J].
Aiena, Pietro ;
Biondi, Maria T. ;
Carpintero, Carlos .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2839-2848
[4]   On the equivalence of Browder's and generalized Browder's theorem [J].
Amouch, M. .
GLASGOW MATHEMATICAL JOURNAL, 2006, 48 :179-185
[5]  
Berkani M, 2001, GLASGOW MATH J, V43, P457
[6]   Generalized Browder's and Weyl's theorems for left and right multiplication operators [J].
Boasso, E. ;
Duggal, B. P. ;
Jeon, I. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :461-471
[7]  
Duggal B.P., 2008, MATH P ROYAL IRISH A, V108A, P149, DOI DOI 10.3318/PRIA.2008.108.2.149
[8]   WEYL'S THEOREM, TENSOR PRODUCTS AND MULTIPLICATION OPERATORS II [J].
Duggal, Bhaggy ;
Harte, Robin ;
Kim, An-Hyun .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :705-709
[9]   On the a-Browder and a-Weyl spectra of tensor products [J].
Duggal B.P. ;
Djordjević S.V. ;
Kubrusly C.S. .
Rendiconti del Circolo Matematico di Palermo, 2010, 59 (3) :473-481
[10]   UNIFORM ASCENT AND DESCENT OF BOUNDED OPERATORS [J].
GRABINER, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1982, 34 (02) :317-337