THE EXPONENT SET OF SYMMETRIC PRIMITIVE (0,1) MATRICES WITH ZERO TRACE

被引:22
作者
LIU, B
MCKAY, BD
WORMALD, NC
MIN, ZK
机构
[1] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 2600,AUSTRALIA
[2] UNIV AUCKLAND,DEPT MATH,AUCKLAND,NEW ZEALAND
[3] NANJING UNIV,DEPT MATH,NANJING,PEOPLES R CHINA
关键词
D O I
10.1016/0024-3795(90)90244-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the exponent set of symmetric primitive (0, 1) matrices with zero trace (the adjacency matrices of the simple graphs) is {2,3,...,2n-4}{minus 45 degree rule}S, where S is the set of all odd numbers in {n-2,n-1,...,2n-5}. We also obtain a characterization of the symmetric primitive matrices with zero trace whose exponents attain the upper bound 2n-4. © 1990.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 50 条