THE EXPONENT SET OF SYMMETRIC PRIMITIVE (0,1) MATRICES WITH ZERO TRACE

被引:22
作者
LIU, B
MCKAY, BD
WORMALD, NC
MIN, ZK
机构
[1] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 2600,AUSTRALIA
[2] UNIV AUCKLAND,DEPT MATH,AUCKLAND,NEW ZEALAND
[3] NANJING UNIV,DEPT MATH,NANJING,PEOPLES R CHINA
关键词
D O I
10.1016/0024-3795(90)90244-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the exponent set of symmetric primitive (0, 1) matrices with zero trace (the adjacency matrices of the simple graphs) is {2,3,...,2n-4}{minus 45 degree rule}S, where S is the set of all odd numbers in {n-2,n-1,...,2n-5}. We also obtain a characterization of the symmetric primitive matrices with zero trace whose exponents attain the upper bound 2n-4. © 1990.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 50 条
  • [21] The base sets of quasi-primitive zero-symmetric sign pattern matrices with zero trace
    Wang, Shiying
    Li, Jing
    Han, Wei
    Lin, Shangwei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) : 595 - 605
  • [22] 0-1 matrices with zero trace whose squares are 0-1 matrices
    Huang, Zejun
    Lyu, Zhenhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 156 - 176
  • [23] Packing of (0,1)-matrices
    Vialette, Stephane
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2006, 40 (04): : 519 - 535
  • [24] On the energy of (0,1)-matrices
    Kharaghani, H.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2046 - 2051
  • [25] Majorization for (0,1)-matrices
    Dahl, Geir
    Guterman, Alexander
    Shteyner, Pavel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 585 : 147 - 163
  • [26] (0,1)-MATRICES AND DISCREPANCY
    Beasley, Leroy B.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 692 - 697
  • [27] DECOMPOSITION OF (0,1)-MATRICES
    SWAMINATHAN, R
    VEERAMANI, D
    IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (05) : 629 - 633
  • [28] Matrices with maximum kth local exponent in the class of doubly symmetric primitive matrices
    Chen, Shexi
    Liu, Bolian
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3386 - 3392
  • [29] The maximum, supremum, and spectrum for critical set sizes in (0,1)-matrices
    Cavenagh, Nicholas J.
    Wright, Liam K.
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (08) : 522 - 536
  • [30] GEOMETRIC MATRICES AND AN INEQUALITY FOR (0,1)-MATRICES
    VARGA, LE
    DISCRETE MATHEMATICS, 1990, 82 (03) : 303 - 315