Intuitionistic fuzzy stability of a quadratic functional equation

被引:2
|
作者
Kayal, Nabin Chandra [1 ]
Mondal, Pratap [2 ]
Samanta, T. K. [3 ]
机构
[1] Moula Netaji Vidyalaya, Dept Math, Howrah 711312, W Bengal, India
[2] Orphuli Uday Chand & Mem Inst, Dept Math, Howrah 711303, W Bengal, India
[3] Uluberia Coll, Dept Math, Howrah 711315, W Bengal, India
来源
TBILISI MATHEMATICAL JOURNAL | 2015年 / 8卷 / 02期
关键词
t-norm; t-conorm; Intuitionistic fuzzy normed space; Quadratic functional equation; Hyers-Ulam-Rassias stabilit;
D O I
10.1515/tmj-2015-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to determine Hyers-Ulam-Rassias Stability results concerning the quadratic functional equation f (2x + y) + f (2x - y) = 2f (x + y) + 2f (x - y) + 4f(x) - 2f(y) in intuitionistic fuzzy Banach spaces.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [41] On the stability of a mixed type quadratic-additive functional equation
    Lee, Young-Su
    Na, Junyeop
    Woo, Heejong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [42] FIXED POINT METHODS FOR THE STABILITY OF GENERAL QUADRATIC FUNCTIONAL EQUATION
    Gordji, M. Eshaghi
    Khodaei, H.
    Rassias, J. M.
    FIXED POINT THEORY, 2011, 12 (01): : 71 - 82
  • [43] On the stability of a mixed type quadratic-additive functional equation
    Young-Su Lee
    Junyeop Na
    Heejong Woo
    Advances in Difference Equations, 2013
  • [44] A new quadratic functional equation version and its stability and superstability
    Farhadabadi, Shahrokh
    Lee, Jung Rye
    Park, Choonkil
    Shokri, Javad
    Lee, Jung Rye
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 544 - 552
  • [45] On Hyers-Ulam-Rassias stability of a quadratic functional equation
    Chang, IS
    Lee, EH
    Kim, HM
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 87 - 95
  • [46] On the Hyers-Ulam-Rassias stability of a quadratic functional equation
    Jung, SM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 232 (02) : 384 - 393
  • [47] Generalized Ulam-Hyers stability of (a, b; k > 0)-cubic functional equation in intuitionistic fuzzy normed spaces
    Karthikeyan, S.
    Rassias, John M.
    Arunkumar, M.
    Sathya, E.
    JOURNAL OF ANALYSIS, 2019, 27 (02) : 391 - 415
  • [48] Solution and fuzzy stability of a mixed type functional equation
    Narasimman, P.
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (01) : 29 - 39
  • [49] A FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
    Xu, T. Z.
    Rassias, M. J.
    Xu, W. X.
    Rassias, J. M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2012, 9 (05): : 21 - 40
  • [50] Nonlinear approximation of multiplicative inverse quartic functional equation in intuitionistic fuzzy normed spaces
    Gupta, Eena
    Chugh, Renu
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (04) : 1017 - 1034