Intuitionistic fuzzy stability of a quadratic functional equation

被引:2
|
作者
Kayal, Nabin Chandra [1 ]
Mondal, Pratap [2 ]
Samanta, T. K. [3 ]
机构
[1] Moula Netaji Vidyalaya, Dept Math, Howrah 711312, W Bengal, India
[2] Orphuli Uday Chand & Mem Inst, Dept Math, Howrah 711303, W Bengal, India
[3] Uluberia Coll, Dept Math, Howrah 711315, W Bengal, India
来源
TBILISI MATHEMATICAL JOURNAL | 2015年 / 8卷 / 02期
关键词
t-norm; t-conorm; Intuitionistic fuzzy normed space; Quadratic functional equation; Hyers-Ulam-Rassias stabilit;
D O I
10.1515/tmj-2015-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to determine Hyers-Ulam-Rassias Stability results concerning the quadratic functional equation f (2x + y) + f (2x - y) = 2f (x + y) + 2f (x - y) + 4f(x) - 2f(y) in intuitionistic fuzzy Banach spaces.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [31] HYERS-ULAM STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION
    Elqorachi, E.
    Manar, Y.
    Rassias, Th. M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2010, 1 (02): : 26 - 35
  • [32] Stability for quadratic functional equation in the spaces of generalized functions
    Lee, Young-Su
    Chung, Soon-Yeong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) : 101 - 110
  • [33] NONLINEAR STABILITY OF A QUADRATIC FUNCTIONAL EQUATION WITH COMPLEX INVOLUTION
    Saadati, Reza
    Sadeghi, Ghadir
    ARCHIVUM MATHEMATICUM, 2011, 47 (02): : 111 - 117
  • [34] Stability of a Quadratic Functional Equation in the Spaces of Generalized Functions
    Young-Su Lee
    Journal of Inequalities and Applications, 2008
  • [35] Non-Archimedean stability of a quadratic functional equation
    Kenary H.A.
    Cho Y.J.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2013, 59 (2) : 319 - 330
  • [36] FUNDAMENTAL STABILITIES OF THE NONIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES
    Bodaghi, Abasalt
    Park, Choonkil
    Rassias, John Michael
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04): : 729 - 743
  • [37] Stability of an additive-quadratic-quartic functional equation
    Kim, Gwang Hui
    Lee, Yang-Hi
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 1 - 7
  • [38] Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations
    Bodaghi, Abasalt
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (04) : 2309 - 2317
  • [39] A HYERS-ULAM-RASSIAS STABILITY RESULT FOR FUNCTIONAL EQUATIONS IN INTUITIONISTIC FUZZY BANACH SPACES
    Kayal, N. C.
    Samanta, T. K.
    Saha, P.
    Choudhury, B. S.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (05): : 87 - 96
  • [40] Solution and Stability of n-Dimensional Quadratic Functional Equation
    Arunkumar, M.
    Murthy, S.
    Ganapathy, G.
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 384 - +