A NOTE ON GV-MODULES WITH KRULL DIMENSION

被引:7
作者
HUYNH, DV
SMITH, PF
WISBAUER, R
机构
[1] INST MATH,HANOI,VIETNAM
[2] UNIV DUSSELDORF,INST MATH,W-4000 DUSSELDORF 1,GERMANY
[3] UNIV GLASGOW,DEPT MATH,GLASGOW G12 8QQ,SCOTLAND
关键词
D O I
10.1017/S0017089500009484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending a result of Boyle and Goodearl in [1] on V-rings it was shown in Yousif [11] that a generalized V-module (GV-module) has Krull dimension if and only if it is noetherian. Our note is based on the observation that every GV-module has a maximal submodule (Lemma 1). Applying a theorem of Shock [6] we immediately obtain that a GV-module has acc on essential submodules if and only if for every essential submodule K [formula ommitted] M the factor module M/K has finitely generated socle. Yousif's result is obtained as a corollary. Let R be an associative ring with unity and R-Mod the category of unital left R-modules. Soc M denotes the socle of an R-module M. If K [formula ommitted] M is an essential submodule we write K⊴M.An R-module M is called co-semisimple or a V-module, if every simple module is M-injective ([2], [7], [9], [10]). According to Hirano [3] M is a generalized V-module or GV-module, if every singular simple R-module is M-injective. This extends the notion of a left GV-ring in Ramamurthi-Rangaswamy [5].It is easy to see that submodules, factor modules and direct sums of co-semisimple modules (GV-modules) are again co-semisimple (GV-modules) (e.g. [10, § 23]). © 1990, Glasgow Mathematical Journal Trust. All rights reserved.
引用
收藏
页码:389 / 390
页数:2
相关论文
共 11 条
[1]   RINGS OVER WHICH CERTAIN MODULES ARE INJECTIVE [J].
BOYLE, AK ;
GOODEARL, KR .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) :43-53
[2]  
FULLER KR, 1972, J LOND MATH SOC, V5, P423
[3]  
Hirano Y., 1981, HIROSHIMA MATH J, V11, P125
[4]   RELATIVE INJECTIVITY AND CHAIN-CONDITIONS [J].
PAGE, SS ;
YOUSIF, MF .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (04) :899-924
[5]   GENERALIZED V-RINGS [J].
RAMAMURTHI, VS ;
RANGASWAMY, KM .
MATHEMATICA SCANDINAVICA, 1972, 31 (01) :69-77
[6]   DUAL GENERALIZATIONS OF ARTINIAN AND NOETHERIAN CONDITIONS [J].
SHOCK, RC .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 54 (02) :227-235
[7]  
Tominaga H., 1976, MATH J OKAYAMA U, V18, P117
[8]  
VANHUYNH D, 1989, ARCH MATH BASEL, V53, P252
[9]   CO-SEMISIMPLE MODULES AND NONASSOCIATIVE V-RINGS [J].
WISBAUER, R .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (11) :1193-1209
[10]  
Wisbauer R., 1988, GRUNDLAGEN MODUL RIN