Statistical inference in nonlinear regression under heteroscedasticity

被引:0
|
作者
Lim, Changwon [1 ]
Sen, Pranab K. [2 ,3 ]
Peddada, Shyamal D. [1 ]
机构
[1] NIEHS, NIH, Biostat Branch, 111 TW Alexander Dr, Res Triangle Pk, NC 27709 USA
[2] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
来源
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS | 2010年 / 72卷 / 02期
关键词
Asymptotic normality; Dose-response study; Heteroscedasticity; Hill model; M-estimation procedure; Nonlinear regression model; Toxicology; Weighted M-estimator;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear regression models are commonly used in toxicology and pharmacology. When fitting nonlinear models for such data, one needs to pay attention to error variance structure in the model and the presence of possible outliers or influential observations. In this paper, an M-estimation based procedure is considered in heteroscedastic nonlinear regression models where the standard deviation is modeled by a nonlinear function. The methodology is illustrated using toxicological data.
引用
收藏
页码:202 / 218
页数:17
相关论文
共 50 条