Knowledge Discovery in Spectral Data by Means of Complex Networks

被引:6
作者
Zanin, Massimiliano [1 ,2 ,3 ]
Papo, David [2 ]
Gonzalez Solis, Jose Luis [4 ]
Martinez Espinosa, Juan Carlos [4 ,5 ]
Frausto-Reyes, Claudio [6 ]
Anda, Pascual Palomares [7 ]
Sevilla-Escoboza, Ricardo [4 ]
Jaimes-Reategui, Rider [4 ]
Boccaletti, Stefano [2 ]
Menasalvas, Ernestina [2 ]
Sousa, Pedro [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Engn Elect, Lisbon, Portugal
[2] Polytechn Univ Madrid Pozuelo Alarcon, Ctr Biomed Technol, Madrid, Spain
[3] Innaxis Fdn & Res Inst, Madrid 28006, Spain
[4] Univ Guadalajara, Ctr Univ Los Lagos, Biophys & Biol Sci Lab, Lagos Moreno 47460, Jalisco, Mexico
[5] UPHG, Biotechnol & Mech Acad, Inst Politecn Nacl, Guanajuato 36275, Mexico
[6] Ctr Invest Opt, Aguascalientes 20200, Mexico
[7] Hosp Reg Alta Especializac Bajlo, Leon 37660, Gto, Mexico
关键词
complex networks; data mining; spectroscopy; classification;
D O I
10.3390/metabo3010155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled) subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 30 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   MORE IS DIFFERENT - BROKEN SYMMETRY AND NATURE OF HIERARCHICAL STRUCTURE OF SCIENCE [J].
ANDERSON, PW .
SCIENCE, 1972, 177 (4047) :393-&
[3]  
Bishop C. M, 2006, PATTERN RECOGNITION
[4]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[5]   Eigenvector-like measures of centrality for asymmetric relations [J].
Bonacich, P ;
Lloyd, P .
SOCIAL NETWORKS, 2001, 23 (03) :191-201
[6]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[7]   Characterization of complex networks: A survey of measurements [J].
Costa, L. Da F. ;
Rodrigues, F. A. ;
Travieso, G. ;
Boas, P. R. Villas .
ADVANCES IN PHYSICS, 2007, 56 (01) :167-242
[8]   Glomerulonephritis [J].
Couser, WG .
LANCET, 1999, 353 (9163) :1509-1515
[9]  
Gonzalez-Solis J.L., 2012, VIB SPECTRO IN PRESS
[10]  
Hastie T, 2009, MATH INTELL