INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS

被引:38
作者
GAO, XC
XU, JB
QIAN, TZ
机构
[1] CHINESE CTR ADV SCI & TECHNOL, WORLD LAB, BEIJING, PEOPLES R CHINA
[2] CHINESE ACAD SCI, INST THEORET PHYS, BEIJING, PEOPLES R CHINA
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 07期
关键词
D O I
10.1103/PhysRevA.46.3626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the Lewis-Riesenfeld invariant theory is generalized for the study of systems with non-Hermitian time-dependent Hamiltonians. It is then used to study the nonadiabatic cyclic evolution and the Aharonov-Anandan phase. It is shown that the study of noncyclic evolution can be reduced to the study of cyclic evolution. The two-level dissipative system and the classical time-dependent harmonic oscillator are discussed as illustrative examples.
引用
收藏
页码:3626 / 3630
页数:5
相关论文
共 15 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[4]   HISTORIES OF ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876) :61-72
[5]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[6]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[7]   THE EXACT SOLUTION FOR THE GENERALIZED TIME-DEPENDENT HARMONIC-OSCILLATOR AND ITS ADIABATIC LIMIT [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
ANNALS OF PHYSICS, 1990, 204 (01) :235-243
[8]   GEOMETRIC PHASE AND THE GENERALIZED INVARIANT FORMULATION [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
PHYSICAL REVIEW A, 1991, 44 (11) :7016-7021
[9]   COMPLEX GEOMETRICAL PHASES FOR DISSIPATIVE SYSTEMS [J].
GARRISON, JC ;
WRIGHT, EM .
PHYSICS LETTERS A, 1988, 128 (3-4) :177-181
[10]   ANGLE VARIABLE HOLONOMY IN ADIABATIC EXCURSION OF AN INTEGRABLE HAMILTONIAN [J].
HANNAY, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :221-230