ASYMPTOTIC-BEHAVIOR OF M-ESTIMATOR AND RELATED RANDOM FIELD FOR DIFFUSION PROCESS

被引:35
作者
YOSHIDA, N [1 ]
机构
[1] OSAKA UNIV,FAC ENGN SCI,DEPT APPL MATH,TOYONAKA,OSAKA 560,JAPAN
关键词
Diffusion process; M-estimator;
D O I
10.1007/BF00050834
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The M-estimate which maximizes a positive stochastic process Q is treated for multidimensional diffusion models. The convergence in distribution of the process of ratio of Q's after normalizing is proved. The asymptotic behavior of M-estimates is stated. We present the asymptotic variance in general cases and in estimation by misspecified models. © 1990 The Institute of Statistical Mathematics.
引用
收藏
页码:221 / 251
页数:31
相关论文
共 27 条
[1]  
Arnold L., 1987, Stochastics, V21, P41, DOI 10.1080/17442508708833450
[2]  
BASAWA IV, 1983, LECTURE NOTES STATIS, V17
[3]   GENERAL M-ESTIMATES FOR CONTAMINATED P TH-ORDER AUTOREGRESSIVE PROCESSES - CONSISTENCY AND ASYMPTOTIC NORMALITY - ROBUSTNESS IN AUTOREGRESSIVE PROCESSES [J].
BUSTOS, OH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (04) :491-504
[4]   STABLE CONVERGENCE OF SEMIMARTINGALES [J].
FEIGIN, PD .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) :125-134
[5]  
Gihman I.I., 1972, STOCHASTIC DIFFERENT
[6]  
Ibragimov, 1973, THEOR PROBAB APPL, V18, P76, DOI 10.1137/1118006
[7]  
IBRAGIMOV IA, 1972, THEOR PROBAB APPL, V17, P443
[8]  
IBRAGIMOV IA, 1981, STATISTICAL ESTIMATI
[9]   WEAK CONVERGENCE OF LIKELIHOOD RATIO RANDOM FIELDS AND ITS APPLICATIONS [J].
INAGAKI, N ;
OGATA, Y .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1975, 27 (03) :391-419
[10]  
Jeganathan P., 1982, SANKHYA A, P213