IONIZATION RATES OF H-2(+) IN AN INTENSE LASER FIELD BY NUMERICAL-INTEGRATION OF THE TIME-DEPENDENT SCHRODINGER-EQUATION

被引:121
作者
CHELKOWSKI, S
ZUO, T
BANDRAUK, AD
机构
[1] Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevA.46.R5342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A numerical method of integration of the time-dependent Schrodinger equation is presented for the hydrogen atom and for the H-2+ molecule. Cylindrical coordinates are used and the wave function is expressed as a Bessel-Fourier series. This expansion allows one to eliminate singularities present in the Hamiltonian and to use a unitary split operator to evaluate numerically multiphoton transitions. Laser-induced ionization rates for H-2+ are calculated and compared with rates for the hydrogen atom. A strong dependence of the H-2+ ionization rates on the initial vibrational excitation is found.
引用
收藏
页码:R5342 / R5345
页数:4
相关论文
共 50 条
[21]   EXPLICIT SOLUTIONS OF THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
ENGLEFIELD, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (03) :593-600
[22]   CONVERGENCE PROPERTIES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
SJOGREN, P ;
SJOLIN, P .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1989, 14 (01) :13-25
[23]   SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION NUMERICALLY [J].
IITAKA, T .
PHYSICAL REVIEW E, 1994, 49 (05) :4684-4690
[24]   EXACT SOLUTION TO THE TIME-DEPENDENT SCHRODINGER-EQUATION IN 2 DIMENSIONS [J].
KAUSHAL, RS .
PHYSICAL REVIEW A, 1992, 46 (05) :2941-2944
[25]   A VARIABLE STEP METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
RAPTIS, AD ;
CASH, JR .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (02) :113-119
[26]   EXPLICIT INTEGRATION METHOD FOR TIME-DEPENDENT SCHRODINGER EQUATION FOR CHEMICAL-REACTIONS - CALCULATIONS FOR H + H-2 REACTION [J].
ASKAR, A ;
CAKMAK, AS .
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (10) :1262-1262
[27]   ALTERNATIVE APPROXIMATE SOLUTION TO THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
SCHULTHEIS, H ;
SCHULTHEIS, R ;
VOLKOV, AB .
PHYSICS LETTERS B, 1980, 89 (02) :165-168
[28]   GENERALIZED NONLINEAR SCHRODINGER-EQUATION WITH TIME-DEPENDENT DISSIPATION [J].
ADOMIAN, G ;
MEYERS, RE .
APPLIED MATHEMATICS LETTERS, 1995, 8 (06) :7-8
[29]   ON THE SCHRODINGER-EQUATION WITH TIME-DEPENDENT ELECTRIC-FIELDS [J].
IORIO, RJ ;
MARCHESIN, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 96 :117-134
[30]   EXACT-SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
RAY, JR .
PHYSICAL REVIEW A, 1982, 26 (02) :729-733