ON SOLUTIONS OF THE DIFFERENCE EQUATION x(n+1)= x(n-3)/(-1

被引:0
作者
Cinar, Cengiz [1 ]
Karatas, Ramazan [1 ]
Yalcinkaya, Ibrahim [1 ]
机构
[1] Selcuk Univ, Fac Educ, Dept Math, TR-42099 Konya, Turkey
来源
MATHEMATICA BOHEMICA | 2007年 / 132卷 / 03期
关键词
difference equation; recursive sequence; solutions; equilibrium point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the solutions and attractivity of the difference equation x(n+1)= x(n-3)/(-1 + x(n)x(n-1)x(n-1)x(n)x(n-3)) fpr n = 0, 1, 2, ... where x-3, x-2, x-1 and xo are real numbers such that x(0) are real numbers such that x(0)x(-1x-2)x(-3) not equal 1.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 50 条
[11]   Global behavior of the difference equation xn+1 = Axn-1/B-Cx(n)x(n-2) [J].
Abo-Zeid, R. ;
Cinar, Cengiz .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01) :43-49
[12]   On boundedness of solutions of the difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=p+\frac{x_{n-1}}{x_{n}}$\end{document} for p<1 [J].
Taixiang Sun ;
Xin Wu ;
Qiuli He ;
Hongjian Xi .
Journal of Applied Mathematics and Computing, 2014, 44 (1-2) :61-68
[13]   Exact solution to an approximate sine-Gordon equation in (n+1)-dimensional space [J].
Feng, ZS .
PHYSICS LETTERS A, 2002, 302 (2-3) :64-76
[14]   Dynamical behavior of rational difference equation xn+1=xn-17±1±xn-2xn-5xn-8xn-11xn-14xn-17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=\frac{x_{n-17}}{\pm 1\pm x_{n-2}x_{n-5}x_{n-8}x_{n-11}x_{n-14}x_{n-17}}$$\end{document} [J].
Burak Oğul ;
Dağıstan Şimşek ;
Hasan Öğünmez ;
Abdullah Selçuk Kurbanlı .
Boletín de la Sociedad Matemática Mexicana, 2021, 27 (2)
[15]   THE RATIONAL RECURSIVE SEQUENCE XN+1=(BETA-X-N(2))/(U+X-N-1(2)) [J].
CAMOUZIS, E ;
LADAS, G ;
RODRIGUES, IW ;
NORTHSHIELD, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (1-3) :37-43
[16]   On the solutions of the difference equation xn+1=xn-1/-1+axnxn-1 [J].
Çinar, C .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (03) :793-797
[17]   On the difference equation xn+1=axn−l+bxn−k+f(xn−l,xn−k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} )$\end{document} [J].
Mahmoud A. E. Abdelrahman ;
George E. Chatzarakis ;
Tongxing Li ;
Osama Moaaz .
Advances in Difference Equations, 2018 (1)
[18]   ON THE RECURSIVE SEQUENCE x(n+ 1) = alpha [J].
Stevic, Stevo .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 18 (1-2) :229-234
[20]   On the positive solutions of the difference equation xn+1 = (xn-1)/(1+xnxn-1) [J].
Çinar, C .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (01) :21-24