Periodic Solutions for a Class of n-th Order Functional Differential Equations

被引:3
作者
Song, Bing [1 ,2 ]
Pan, Lijun [3 ]
Cao, Jinde [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] JiangSu Inst Econ Trade Technol, Nanjing 211168, Peoples R China
[3] Jia Ying Univ, Sch Math, Meizhou 514015, Guangdong, Peoples R China
关键词
D O I
10.1155/2011/916279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of periodic solutions for n-th order functional differential equations x((n)) (t) = Sigma(n-1)(i=0) b(i)[x((i)) (t)](k) + f(x(t - tau(t))) +p(t). Some new results on the existence of periodic solutions of the equations are obtained. Our approach is based on the coincidence degree theory of Mawhin.
引用
收藏
页数:21
相关论文
共 25 条
[1]  
Chen X. R., 2009, INT J PURE APPL MATH, V55, P319
[2]  
Cong FH, 1998, NONLINEAR ANAL-THEOR, V32, P787
[3]   Existence of periodic solutions of (2n+1)th-order ordinary differential equations [J].
Cong, FZ .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :727-732
[4]  
Cong FZ, 2000, J MATH ANAL APPL, V241, P1
[5]  
Ezeilo J. O. C., 1960, P CAMBRIDGE PHILOS S, V56, P381
[6]   A MULTIPLICITY RESULT FOR PERIODIC-SOLUTIONS OF FORCED NONLINEAR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
FABRY, C ;
MAWHIN, J ;
NKASHAMA, MN .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :173-180
[7]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[8]  
Jiao G., 2004, J MATH ANAL APPL, V272, P691
[9]   On periodic solutions of systems of differential equations with deviating arguments [J].
Kiguradze, I ;
Puza, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (02) :229-242
[10]  
[刘炳文 Liu Bingwen], 2004, [数学学报, Acta Mathematica Sinica], V47, P1133