WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS AND LOCAL REGULARITY FOR A CLASS OF DEGENERATE ELLIPTIC-EQUATIONS

被引:30
作者
FRANCHI, B
LU, G
WHEEDEN, RL
机构
[1] WRIGHT STATE UNIV,DEPT MATH,DAYTON,OH 45435
[2] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[3] INST ADV STUDY,PRINCETON,NJ 08540
关键词
HORMANDER VECTOR FIELDS; POINCARE INEQUALITY; RELATIVE ISOPERIMETRIC INEQUALITY; HARNACKS INEQUALITY;
D O I
10.1007/BF01053453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we state weighted Poincare inequalities associated with a family of vector fields satisfying Hormander rank condition. Then, applications are given to relative isoperimetric inequalities and to local regularity (Harnack's inequality) for a class of degenerate elliptic equations with measurable coefficients.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 36 条
[1]  
BIROLI M, IN PRESS ATTI A SFMN
[2]  
BIROLI M, IN PRESS FEB P C POT
[3]  
BOJARSKI B, 1989, LECT NOTES MATH, V1351, P52
[4]  
Busemann H., 1955, GEOMETRY GEODESICS
[5]   INEQUALITIES FOR MAXIMAL FUNCTION RELATIVE TO A METRIC [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1976, 57 (03) :297-306
[6]  
Cassano FS, 1994, LOCAL BOUNDEDNESS CE
[7]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[8]  
CHUA SK, IN PRESS P AM MATH S
[9]  
CITTI G, 1993, AM J MATH, V115, P639
[10]  
Federer H., 1969, GRUNDLEHREN MATH WIS