THE MAXIMUM GENUS OF GRAPHS OF DIAMETER 2

被引:24
|
作者
SKOVIERA, M
机构
[1] Department of Computer Science, Comenius University
关键词
D O I
10.1016/0012-365X(91)90046-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (finite) graph of diameter two. We prove that if G is loopless then it is upper embeddable, i.e. the maximum genus gamma-m(G) equals [beta(G)/2], where beta(G) = \E(G)\ - \V(G)\ + 1 is the Betti number of G. For graphs with loops we show that [beta(G)/2] - 2 less-than-or-equal-to gamma-M(G) less-than-or-equal-to [beta(G)/2] if G is vertex 2-connected, and compute the exact value of gamma-M(G) if the vertex-connectivity of G is 1. We note that by a result of Jungerman [2] and Xuong [10] 4-connected graphs are upper embeddable.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条