THE (k, s)-FRACTIONAL CALCULUS OF CLASS OF A FUNCTION

被引:2
|
作者
Rahman, G. [1 ]
Ghaffar, A. [2 ]
Nisar, K. S. [3 ]
Azeema [4 ]
机构
[1] Int Islamic Univ, Dept Math, Islamabad, Pakistan
[2] BUITEMS, Dept Math Sci, Quetta, Pakistan
[3] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Al Dawaser 11991, Riyadh Region, Saudi Arabia
[4] SBK Womens Univ, Dept Math, Quetta, Pakistan
来源
HONAM MATHEMATICAL JOURNAL | 2018年 / 40卷 / 01期
关键词
Fractional integral operators; fractional differential operators; generalized; (k; s)-fractional integral operators; s)-fractional differential operators;
D O I
10.5831/HMJ.2018.40.1.125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this present paper, we deal with the generalized (k, s)-fractional integral and differential operators recently defined by Nisar et al. and obtain some generalized (k, s)-fractional integral and differential formulas involving the class of a function as its kernels. Also, we investigate a certain number of their consequences containing the said function in their kernels.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 50 条
  • [1] The (k, s)-fractional calculus of k-Mittag-Leffler function
    Nisar, K. S.
    Rahman, G.
    Baleanu, D.
    Mubeen, S.
    Arshad, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Composition Formulae for the k-Fractional Calculus Operator with the S-Function
    Tadesse, Hagos
    Habenom, Haile
    Alaria, Anita
    Shimelis, Biniyam
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [3] FRACTIONAL CALCULUS OF THE GENERALIZED MITTAG-LEFFLER (p,s,k)-FUNCTION
    Gurjar, Meena Kumari
    Chhattry, Preeti
    Shrivastava, Subhash Chandra
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (1-2): : 73 - 82
  • [4] The (k, s)-fractional calculus of k-Mittag-Leffler function (vol 2017, 118, 2017)
    Nisar, K. S.
    Rahman, G.
    Baleanu, D.
    Mubeen, S.
    Arshad, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION
    Daiya, Jitendra
    Ram, Jeta
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (1-2): : 89 - 96
  • [6] (k, s)-fractional integral operators in multiplicative calculus
    Zhang, Xiaohua
    Peng, Yu
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2025, 195
  • [7] New fractional calculus results involving Srivastava's general class of multivariable polynomials and The H - function
    Chaurasia, V. B. L.
    Gill, V.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2015, 11 (01) : 19 - 32
  • [8] Fractional calculus operator with generalize k-Mittag-Leffler function
    Singh, Yudhveer
    Dubey, Ravi Shanker
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (02) : 545 - 553
  • [9] Generalized hypergeometric k-functions via (k, s)-fractional calculus
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Choi, Junesang
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1791 - 1800
  • [10] On the fractional calculus of Besicovitch function
    Liang, Yongshun
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2741 - 2747