A Sensor-Based Learning Algorithm for the Self-Organization of Robot Behavior

被引:9
|
作者
Hesse, Frank [1 ,2 ,3 ]
Martius, Georg [1 ,2 ,3 ]
Der, Ralf [4 ]
Herrmann, J. Michael [1 ,2 ,5 ]
机构
[1] Max Planck Inst Dynam & Self Org, Bunsenstr 10, Gottingen 37073, Germany
[2] Bernstein Ctr Computat Neurosci Gottingen, Gottingen 37073, Germany
[3] Georg August Univ Gottingen, Inst Nonlinear Dynam, Gottingen 37073, Germany
[4] Max Planck Inst Math Sci, Leipzig 04103, Germany
[5] Univ Edinburgh, Sch Informat, IPAB, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
Self-Organization; Autonomous Robot Control; Neural Networks; Homeokinesis;
D O I
10.3390/a2010398
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ideally, sensory information forms the only source of information to a robot. We consider an algorithm for the self-organization of a controller. At short time scales the controller is merely reactive but the parameter dynamics and the acquisition of knowledge by an internal model lead to seemingly purposeful behavior on longer time scales. As a paradigmatic example, we study the simulation of an underactuated snake-like robot. By interacting with the real physical system formed by the robotic hardware and the environment, the controller achieves a sensitive and body-specific actuation of the robot.
引用
收藏
页码:398 / 409
页数:12
相关论文
共 50 条
  • [31] Learning the perceptual control manifold for sensor-based robot path planning
    Zeller, M
    Schulten, K
    Sharma, R
    1997 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION - CIRA '97, PROCEEDINGS: TOWARDS NEW COMPUTATIONAL PRINCIPLES FOR ROBOTICS AND AUTOMATION, 1997, : 48 - 53
  • [32] Sensor-based Mobile Robot Navigation via Deep Reinforcement Learning
    Han, Seungho-Ho
    Choi, Ho-Jin
    Benz, Philipp
    Loaiciga, Jorge
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 147 - 154
  • [33] Sensor-Based Robot Deployment Algorithms
    Le Ny, Jerome
    Pappas, George J.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5486 - 5492
  • [34] DEVELOPMENT OF SENSOR-BASED INDUSTRIAL ROBOT
    YAMAMOTO, Y
    KISHIMOTO, S
    ISHIDA, J
    TECK, LF
    SHARP TECHNICAL JOURNAL, 1993, (57): : 47 - 51
  • [35] Self-organization and collective behavior in vertebrates
    Couzin, ID
    Krause, J
    ADVANCES IN THE STUDY OF BEHAVIOR, VOL 32, 2003, 32 : 1 - 75
  • [36] SUPPORTING SUPERVISED LEARNING BY SELF-ORGANIZATION
    HRYCEJ, T
    NEUROCOMPUTING, 1992, 4 (1-2) : 17 - 30
  • [37] Learning and Self-organization for Spatiotemporal Systems
    Runkler, Thomas A.
    Sollacher, Rudolf
    Szabo, Andrei
    KUNSTLICHE INTELLIGENZ, 2012, 26 (03): : 269 - 274
  • [38] Learning and Self-organization for Spatiotemporal Systems
    Thomas A. Runkler
    Rudolf Sollacher
    Andrei Szabo
    KI - Künstliche Intelligenz, 2012, 26 (3) : 269 - 274
  • [39] Interference Aware Self-Organization for Wireless Sensor Networks: a Reinforcement Learning Approach
    Stabellini, Luca
    Zander, Jens
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2008, : 560 - 565
  • [40] Self-organization of activity in wireless sensor networks
    Davis, P
    Hasegawa, A
    Kadowaki, N
    Obana, S
    Proceedings of the 2004 Intelligent Sensors, Sensor Networks & Information Processing Conference, 2004, : 103 - 106