ON A DEFICIENCY IN UNCONDITIONALLY STABLE EXPLICIT TIME-INTEGRATION METHODS IN ELASTODYNAMICS AND HEAT-TRANSFER

被引:9
作者
FRIED, I
机构
关键词
D O I
10.1016/0045-7825(84)90061-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
[21]   FINITE-ELEMENT NONLINEAR HEAT-TRANSFER ANALYSIS USING A STABLE EXPLICIT METHOD [J].
TRUJILLO, DM ;
BUSBY, HR .
NUCLEAR ENGINEERING AND DESIGN, 1977, 44 (02) :227-233
[22]   Applications of a Family of Unconditionally Stable, Dissipative, Explicit Methods to Pseudodynamic Tests [J].
S-Y. Chang ;
T-H. Wu ;
N-C. Tran ;
Y-S. Yang .
Experimental Techniques, 2017, 41 :19-36
[23]   PROCEDURE TO OBTAIN UNCONDITIONALLY STABLE EXPLICIT METHODS FOR STRUCTURAL PROBLEMS. [J].
Brusa, L. ;
Ciacci, R. ;
Greco, A. .
Transactions of the International Conference on Structural Mechanics in Reactor Technology, 1979, M.
[24]   An unconditionally stable semi-explicit integration algorithm with controllable numerical damping [J].
Fu, Bo ;
Zhang, Futai ;
Zhang, Qingkai ;
Chen, Jin .
Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2025, 57 (02) :113-121
[25]   IMPROVED NUMERICAL DISSIPATION FOR TIME INTEGRATION ALGORITHMS IN CONDUCTION HEAT-TRANSFER [J].
CORNWELL, RE ;
MALKUS, DS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 97 (02) :149-156
[26]   An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics [J].
Marazzato, Frederic ;
Ern, Alexandre ;
Mariotti, Christian ;
Monasse, Laurent .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 :906-927
[27]   A time-integration method for stable simulation of extremely deformable hyperelastic objects [J].
Kikuuwe, Ryo .
VISUAL COMPUTER, 2017, 33 (10) :1335-1346
[28]   A time-integration method for stable simulation of extremely deformable hyperelastic objects [J].
Ryo Kikuuwe .
The Visual Computer, 2017, 33 :1335-1346
[29]   An Explicit Time-Domain Finite-Element Method that is Unconditionally Stable [J].
He, Qing ;
Jiao, Dan .
2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, :2969-2972
[30]   One-Parameter Controlled Non-Dissipative Unconditionally Stable Explicit Structure-Dependent Integration Methods with No Overshoot [J].
Selvakumar, Veerarajan ;
Chang, Shuenn-Yih .
APPLIED SCIENCES-BASEL, 2021, 11 (24)