An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma

被引:19
作者
Ollesch, Julian [1 ]
Theegarten, Dirk [2 ]
Altmayer, Matthias [3 ]
Darwiche, Kaid [4 ]
Hager, Thomas [2 ]
Stamatis, Georgios [3 ]
Gerwert, Klaus [1 ]
机构
[1] Ruhr Univ Bochum, Dept Biophys ND04 596, Prot Res Unit Ruhr Europe PURE, Univ Str 150, D-44780 Bochum, Germany
[2] Univ Duisburg Essen, Univ Hosp Essen, Inst Pathol, Hufelandstr 55, D-45147 Essen, Germany
[3] Univ Hosp Essen GmbH, Dept Thorac Surg & Thorac Endoscopy, Westgerman Lungctr, Ruhrlandklin, Tuschener Weg 40, D-45239 Essen, Germany
[4] Univ Hosp Essen GmbH, Dept Intervent Pneumol, West German Lung Ctr, Ruhrlandklin, Tuschener Weg 40, D-45239 Essen, Germany
关键词
HT-FTIR spectroscopy; serum; plasma; non-small-cell lung cancer; disease pattern recognition; photonic biofluid diagnostics;
D O I
10.3233/BSI-160144
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
BACKGROUND: Lung cancer is the leading cause of death for male and female cancer patients alike. Early diagnosis improves prognosis. A blood test would be a valuable support. OBJECTIVE: Infrared spectroscopy provides a label-free biochemical fingerprint of a sample. A study was conducted on 161 patients with initial cancer suspicion to identify and verify spectral biomarker candidate patterns to detect non-small cell lung carcinoma (NSCLC). METHODS: Blood serum and plasma samples were analysed with an automated FTIR spectroscopic system. Two pattern recognition algorithms and two classifiers were applied. Monte Carlo cross validation was performed with linear discriminant analysis and random forest classification. RESULTS: Marker patterns for the discrimination of cancer from clinically relevant disease control patients were identified in FTIR spectra of blood samples. An accuracy of up to 79% was achieved. Squamous cell and adenocarcinoma patients were separable with an accuracy of 80%. CONCLUSIONS: The study demonstrates the applicability of FTIR spectroscopic blood testing for lung cancer detection. Evidence for cancer subtype discrimination is given. With an improved performance, the method could be developed as a routine diagnostic tool for blood testing detecting NSCLC.
引用
收藏
页码:129 / 144
页数:16
相关论文
共 30 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Classification of malignant and benign tumors of the lung by infrared spectral histopathology (SHP) (vol 95, pg 697, 2015) [J].
Akalin, Ali ;
Mu, Xinying ;
Kon, Mark A. ;
Ergin, Aysegul ;
Remiszewski, Stan H. ;
Thompson, Clay M. ;
Raz, Dan J. ;
Diem, Max ;
Bird, Benjamin ;
Miljkovic, Milos .
LABORATORY INVESTIGATION, 2015, 95 (06) :697-697
[3]  
Baker M.J., 2015, CHEM SOC REV
[4]  
Baker MJ, 2014, J BIOPHOTONICS, V7, P151, DOI 10.1002/jbio.201400504
[5]   Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer [J].
Bird, Benjamin ;
Miljkovic, Milos ;
Remiszewski, Stan ;
Akalin, Ali ;
Kon, Mark ;
Diem, Max .
LABORATORY INVESTIGATION, 2012, 92 (09) :1358-1373
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Minimum redundancy feature selection from microarray gene expression data [J].
Ding, C ;
Peng, HC .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :523-528
[8]   Vascular endothelial growth factor C complements the ability of positron emission tomography to predict nodal disease in lung cancer [J].
Farjah, Farhood ;
Madtes, David K. ;
Wood, Douglas E. ;
Flum, David R. ;
Zadworny, Megan E. ;
Waworuntu, Rachel ;
Hwang, Billanna ;
Mulligan, Michael S. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2015, 150 (04) :796-+
[9]   Variable selection using random forests [J].
Genuer, Robin ;
Poggi, Jean-Michel ;
Tuleau-Malot, Christine .
PATTERN RECOGNITION LETTERS, 2010, 31 (14) :2225-2236
[10]   Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging [J].
Grosserueschkamp, Frederik ;
Kallenbach-Thieltges, Angela ;
Behrens, Thomas ;
Bruening, Thomas ;
Altmayer, Matthias ;
Stamatis, Georgios ;
Theegarten, Dirk ;
Gerwert, Klaus .
ANALYST, 2015, 140 (07) :2114-2120