PRANDTL NUMBER OF LATTICE BHATNAGAR-GROSS-KROOK FLUID

被引:18
作者
CHEN, Y
OHASHI, H
AKIYAMA, M
机构
[1] Department of Quantum Engineering and Systems Science, Faculty of Engineering, University of Tokyo, Tokyo
关键词
D O I
10.1063/1.868771
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The lattice Bhatnagar-Gross-Krook modeled fluid has an unchangeable unit Prandtl number. A simple method is introduced in this report to formulate a flexible Prandtl number for the modeled fluid. The effectiveness of this method was demonstrated by numerical simulation of the Couette flow. (C) 1995 American Institute of Physics.
引用
收藏
页码:2280 / 2282
页数:3
相关论文
共 10 条
[1]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[2]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[3]   A BGK MODEL FOR SMALL PRANDTL NUMBER IN THE NAVIER-STOKES APPROXIMATION [J].
BOUCHUT, F ;
PERTHAME, B .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (1-2) :191-207
[4]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[5]  
Chen Y., 1994, THESIS U TOKYO
[6]   A METHOD FOR CONSTRUCTING A MODEL FORM FOR THE BOLTZMANN-EQUATION [J].
LIU, G .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (02) :277-280
[7]   ANALYSIS OF THE LATTICE BOLTZMANN TREATMENT OF HYDRODYNAMICS [J].
MCNAMARA, G ;
ALDER, B .
PHYSICA A, 1993, 194 (1-4) :218-228
[8]  
Qian Y. H., 1993, Journal of Scientific Computing, V8, P231, DOI 10.1007/BF01060932
[9]   LATTICE BGK MODELS FOR THE NAVIER-STOKES EQUATION - NONLINEAR DEVIATION IN COMPRESSIBLE REGIMES [J].
QIAN, YH ;
ORSZAG, SA .
EUROPHYSICS LETTERS, 1993, 21 (03) :255-259
[10]  
ROTHMAN DH, 1993, IN PRESS REV MOD PHY