ASYMPTOTICS FOR LP EXTREMAL POLYNOMIALS ON THE UNIT-CIRCLE

被引:3
作者
LI, X [1 ]
PAN, K [1 ]
机构
[1] UNIV S FLORIDA,DEPT MATH,TAMPA,FL 33620
关键词
D O I
10.1016/0021-9045(91)90003-S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p > 1, and dμ a positive finite Borel measure on the unit circle Γ: = {z ε{lunate} C: |z| = 1}. Define the monic polynomial φn, p(z)=zn+...ε{lunate}Pn >(the set of polynomials of degree at most n) satisfying ∫ G{cyrillic}|φn, p(z)|pPε{lunate}Pn-1inf ∫ G{cyrillic}|zn + P|p dμ. Under certain conditions on dμ, the asymptotics of φn, p(z) for z outside, on, or inside Γ are obtained (cf. Theorems 2.2 and 2.4). Zero distributions of φn, p are also discussed (cf. Theorems 3.1 and 3.2). © 1991.
引用
收藏
页码:270 / 283
页数:14
相关论文
共 17 条
[1]   JENTZSCH-SZEGO TYPE THEOREMS FOR THE ZEROS OF BEST APPROXIMANTS [J].
BLATT, HP ;
SAFF, EB ;
SIMKANI, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 38 :307-316
[2]  
Duren P., 1970, THEORY HPSPACES
[3]  
FEKETE M, 1954, J ANAL MATH, P49
[4]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[5]  
GERONIMUS YL, 1952, MAT SBORNIK, V31, P3
[6]  
GRENANDER U, 1984, TOEPLITZ FORMS THEIR
[7]  
LUBINSKY DS, 1987, LECT NOTES MATH, V1287, P83
[8]   SUFFICIENT CONDITIONS FOR ASYMPTOTICS ASSOCIATED WITH WEIGHTED EXTREMAL PROBLEMS ON R [J].
LUBINSKY, DS ;
SAFF, EB .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :261-270
[9]  
LUBINSKY DS, 1988, LECTURE NOTES MATH, V1305
[10]  
LUBINSKY DS, ICM89007