INDEX AND TOTAL CURVATURE OF SURFACES WITH CONSTANT MEAN-CURVATURE

被引:8
作者
DOCARMO, MP
DASILVEIRA, AM
机构
关键词
D O I
10.2307/2047750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analogue, for surfaces with constant mean curvature in hyperbolic space, of a theorem of Fischer-Colbrie and Gulliver about minimal surfaces in Euclidean space. That is, for a complete surface M2 in hyperbolic 3-space with constant mean curvature 1, the (Morse) index of the operator L = delta - 2K is finite if and only if the total Gaussian curvature is finite.
引用
收藏
页码:1009 / 1015
页数:7
相关论文
共 5 条
[1]  
BRYANT R, IN PRESS ASTERISQUE
[2]   STABILITY OF COMPLETE NONCOMPACT SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DASILVEIRA, AM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :629-638
[3]  
GULLIVER R, 1986, P SYMP PURE MATH, V44, P213
[4]  
GULLIVER R, 1986, P SYMP PURE MATH, V44, P207
[5]  
HUBER A, 1957, COMMENT MATH HELV, V32, P13, DOI 10.1007/BF02564570