Class of Multivalent Analytic Functions Defined by a Linear Operator

被引:0
作者
Frasin, B. A. [1 ]
机构
[1] Al Al Bayt Univ, Fac Sci, Dept Math, POB 130095, Mafraq, Jordan
关键词
D O I
10.1155/2013/509717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Making use of the linear operator J(p)(m)(lambda,l) defined in (Pra apat, 2012), we introduce the class B-p(m)(lambda,l,mu,alpha) of analytic and p-valent functions in the open unit disk u. Furthermore, we obtain some sufficient conditions for starlikeness and close-to-convexity and some angular properties for functions belonging to this class. Several corollaries and consequences of the main results are also considered.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
Prajapat J.K., Subordination and superordination preserving properties for generalized multiplier transformation operator, Mathematical and Computer Modelling, 55, 3-4, pp. 1456-1465, (2012)
[2]  
Catas A., On certain classes of p-valent functions defined by multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications (GFA'07), 91, pp. 241-250, (2007)
[3]  
Kumar S.S., Taneja H.C., Ravichandran V., Classes multivalent functions defined by dziok- srivastava linear operator and multiplier transformations, Kyungpook Mathematical Journal, 46, pp. 97-109, (2006)
[4]  
Srivastava H.M., Suchithra K., Stephen B.A., Sivasubramanian S., Inclusion and neighborhood properties of certain subclasses of analytic and multivalent functions of complex order, Journal of Inequalities in Pure and Applied Mathematics, 7, 5, (2006)
[5]  
Aouf M.K., Mostafa A.O., On a subclass of n-pvalent prestarlike functions, Computers and Mathematics with Applications, 55, 4, pp. 851-861, (2008)
[6]  
Kamali M., Orhan H., On a subclass of certain starlike functions with negative coefficients, Bulletin of the Korean Mathematical Society, 41, pp. 53-71, (2004)
[7]  
Orhan H., Kiziltun H., A generalization on subfamily of p-valent functions with negative coefficients, Applied Mathematics and Computation, 155, 2, pp. 521-530, (2004)
[8]  
Cho N.E., Kim T.H., Multiplier transformations and strongly close-to-convex functions, Bulletin of the Korean Mathematical Society, 40, pp. 399-410, (2003)
[9]  
Cho N.E., Srivastava H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Mathematical and Computer Modelling, 37, 1-2, pp. 39-49, (2003)
[10]  
Slgean G.S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, pp. 362-372, (1981)