CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-LAPLACIAN

被引:15
作者
Candito, Pasquale [1 ]
D'Agui, Giuseppina [2 ]
机构
[1] Univ Reggio Calabria, Dept DICEAM, Via Graziella Feo Vito, I-89122 Reggio Di Calabria, Italy
[2] Univ Messina, Dept Civil Comp Construct Environm Engn & Appl Ma, I-98166 Messina, Italy
关键词
constant-sign solution; difference equations; Neumann problem;
D O I
10.7494/OpMath.2014.34.4.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of constant-sign solutions for a non-linear Neumann boundary value problem involving the discrete p-Laplacian. Our approach is based on an abstract local minimum theorem and truncation techniques.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 25 条
[1]  
Agarwal R. P, 2000, MONOGRAPHS TXB PURE, V2
[2]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[3]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[4]   ON MULTIPOINT BOUNDARY-VALUE-PROBLEMS FOR DISCRETE EQUATIONS [J].
AGARWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 96 (02) :520-534
[5]  
Anderson D. R., 2005, ADV DIFF EQU, V2, P93
[6]   Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular φ [J].
Bereanu, Cristian ;
Mawhin, Jean .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) :1099-1118
[7]   Ground state and mountain pass solutions for discrete p(•)-Laplacian [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Serban, Calin .
BOUNDARY VALUE PROBLEMS, 2012,
[8]  
Bonanno G., EXISTENCE POSITIVE S
[9]  
Bonanno G, 2010, HDB NONCONVEX ANAL, P1
[10]  
Bonanno G, 2014, ADV NONLINEAR STUD, V14, P915