DEVELOPMENT OF INTERFACES IN RN

被引:59
作者
DEMOTTONI, P [1 ]
SCHATZMAN, M [1 ]
机构
[1] UNIV LYON 1,ANAL NUMER LAB,F-69622 VILLEURBANNE,FRANCE
关键词
D O I
10.1017/S0308210500031486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the reaction-diffusion equation in R(n) x R+:u(t)-h2-DELTA-u + phi(u) = 0, where phi is the derivative of a bistable even potential, and h is a small parameter. If the initial data have a smooth noncritical zero set, we prove that an interface appears in time O(log(h-1)), and that the solution stays close to it for at least time O(1/square-root-h).
引用
收藏
页码:207 / 220
页数:14
相关论文
共 11 条
[1]  
BRONSARD L, 1988, THESIS NYU
[2]   METASTABLE PATTERNS IN SOLUTIONS OF UT=E2UXX-F(U) [J].
CARR, J ;
PEGO, RL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :523-576
[3]  
DANILOV VG, 1988, EXACT ONE 2 PHASE WA
[4]  
DEMOTTONI P, 1989, GEOMETRICAL EVOLUTIO
[5]   THE GENERATION AND PROPAGATION OF INTERNAL LAYERS [J].
FIFE, PC ;
LING, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (01) :19-41
[6]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[7]  
FIFE PC, 1989, CMBS C SERIES
[8]  
FUSCO G, 1989, GEOMETRIC APPROACH D
[9]  
FUSCO G., 1989, J DYN DIFFER EQU, V1, P75, DOI DOI 10.1007/BF01048791
[10]  
KANEL YI, 1965, MAT SBORNIK, V59, P398