ASYMPTOTIC EXPANSION OF CERTAIN INTEGRALS CONTAINING BESSEL FUNCTION J0(X)

被引:0
作者
SCHMIDT, PW
机构
关键词
D O I
10.1063/1.1704223
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1183 / &
相关论文
共 50 条
[41]   EXPLICIT ASYMPTOTIC-EXPANSION OF FOURIER INTEGRALS WITH CERTAIN DEGENERATE CRITICAL-POINTS [J].
DOSTAL, M ;
GAVEAU, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (20) :857-859
[42]   NUMERICAL EVALUATION OF INTEGRALS CONTAINING A SPHERICAL BESSEL-FUNCTION BY PRODUCT INTEGRATION [J].
LEHMAN, DR ;
PARKE, WC ;
MAXIMON, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (07) :1399-1413
[43]   Comments on "Asymptotic expansion of a Bessel function integral using hypergeometric functions" by L.J Landau and L.N.J Luswili [J].
Stoyanov, BJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) :259-262
[44]   Exponential Approximations of the Bessel Functions I0,1(x), J0,1(x), Y0(x), and H0(1,2)(x), with Applications to Electromagnetic Scattering, Radiation, and Diffraction [J].
Rothwell, Edward J. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2009, 51 (03) :138-147
[46]   Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series [J].
Jain R.K. ;
Bhargava A. ;
Rizwanullah M. .
International Journal of Applied and Computational Mathematics, 2022, 8 (1)
[47]   Precise analytic approximations for the Bessel function J1(x) [J].
Maass, Fernando ;
Martin, Pablo .
RESULTS IN PHYSICS, 2018, 8 :1234-1238
[48]   Accurate Analytical Approximation for the Bessel Function J2(x) [J].
Martin, Pablo ;
Ramos-Andrade, Juan Pablo ;
Caro-Perez, Fabian ;
Lastra, Freddy .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
[49]   An Improved Analytical Approximation of the Bessel Function J2(x) [J].
Mahmoud, Mansour ;
Almuashi, Hanan .
AXIOMS, 2025, 14 (03)
[50]   An asymptotic expansion of the q-gamma function Γq(x) [J].
M Mansour .
Journal of Nonlinear Mathematical Physics, 2006, 13 :479-483