ASYMPTOTIC EXPANSION OF CERTAIN INTEGRALS CONTAINING BESSEL FUNCTION J0(X)

被引:0
作者
SCHMIDT, PW
机构
关键词
D O I
10.1063/1.1704223
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1183 / &
相关论文
共 50 条
[21]   TRANSMITTANCE OF A CIRCULAR APERTURE BY AN INTEGRABLE FRACTIONAL-LIKE APPROXIMATION TO J0(X) FUNCTION [J].
LADERA, CL ;
MARTIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :481-489
[22]   ON A GENERALIZATION OF TIKHONOV ASYMPTOTIC FORM FOR INTEGRALS CONTAINING BESSEL-FUNCTIONS [J].
SHCHEPKIN, GG .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (03) :53-64
[23]   SOME INFINITE SUMS INVOLVING ZEROS OF J0(X) [J].
EPSTEIN, LF .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1964, B 68 (01) :17-+
[24]   HIGHER-ORDER 2-POINT QUASI-FRACTIONAL APPROXIMATIONS TO THE BESSEL-FUNCTIONS J0(X) AND J1(X) [J].
GUERRERO, AL ;
MARTIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (01) :276-281
[25]   Asymptotic representations for hypergeometric-Bessel type function and fractional integrals [J].
Kilbas, AA ;
Rodríguez, L ;
Trujillo, JJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) :469-487
[26]   EXPLICIT EXPRESSIONS FOR CERTAIN INDEFINITE INTEGRALS CONTAINING THE PRODUCT OF 2 BESSEL-FUNCTIONS OR THE SQUARE OF A LEGENDRE FUNCTION [J].
PIQUETTE, JC .
UTILITAS MATHEMATICA, 1993, 43 :47-63
[27]   Asymptotic expansion of a Bessel function integral using hypergeometric functions [J].
Landau, LJ ;
Luswili, NJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) :387-397
[28]   Simple analytic approximations to the integral of Bessel's J0:: application to the transmittance of a circular aperture. [J].
Ladera, CL ;
Martín, P .
4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 :490-493
[29]   DEMONSTRATION FOR OBSERVING J0(X) ON A RESONANT ROTATING VERTICAL CHAIN [J].
WESTERN, AB .
AMERICAN JOURNAL OF PHYSICS, 1980, 48 (01) :54-56
[30]   On quadrature of highly oscillatory Bessel function via asymptotic analysis of simplex integrals [J].
Zhou, Yongxiong ;
Chen, Ruyun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 456