A SIMULATION STUDY OF SOME NONPARAMETRIC REGRESSION-ESTIMATORS

被引:7
|
作者
TALWAR, PP [1 ]
机构
[1] UNIV ALBERTA,DEPT FINANCE & MANAGEMENT SCI,EDMONTON T6G 2R6,AB,CANADA
关键词
ARCH; HETEROSCEDASTICITY; HEAVY TAILS; ROBUST; SIMULATION; SECURITY PRICE; CAPM;
D O I
10.1016/0167-9473(93)90259-V
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the performance of the Theil type estimators when observations are generated from the models which have been suggested in the finance literature to fit security price data. In the simulation study, the distributions chosen as models for the error term in regression equations are: standard normal, ''t'' with 4 degrees of freedom, symmetric stable and chi-square with 4 degrees of freedom. In addition, some heteroscedastic models (unconditional as well as ARCH) are also included in the simulation study.
引用
收藏
页码:309 / 327
页数:19
相关论文
共 50 条
  • [31] Improved Heteroscedasticity-Consistent Ridge Estimators for Linear Regression with Multicollinearity
    Dar, Irum Sajjad
    Chand, Sohail
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1593 - 1604
  • [32] Comparing Nonparametric Estimators for the Number of Shared Species in Two Populations
    Yue, Jack C.
    Clayton, Murray K.
    Hung, Chi-Ruei
    DIVERSITY-BASEL, 2022, 14 (04):
  • [33] New heteroscedasticity-adjusted ridge estimators in linear regression model
    Dar, Irum Sajjad
    Chand, Sohail
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (19) : 7087 - 7101
  • [34] A Jackknifed estimators for the negative binomial regression model
    Turkan, Semra
    Ozel, Gamze
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1845 - 1865
  • [35] New estimators for the probit regression model with multicollinearity
    Abonazel, Mohamed R.
    Dawoud, Issam
    Awwad, Fuad A.
    Tag-Eldin, Elsayed
    SCIENTIFIC AFRICAN, 2023, 19
  • [36] The bias and skewness of M-estimators in regression
    Withers, Christopher
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1 - 14
  • [37] On ridge estimators for the negative binomial regression model
    Mansson, Kristofer
    ECONOMIC MODELLING, 2012, 29 (02) : 178 - 184
  • [38] M-Estimators for Regression with Changing Scale
    Withers, Christopher S.
    Nadarajah, Saralees
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2016, 78 : 238 - 286
  • [39] Model and estimators for partial least squares regression
    Helland, Inge Svein
    Saebo, Solve
    Almoy, Trygve
    Rimal, Raju
    JOURNAL OF CHEMOMETRICS, 2018, 32 (09)
  • [40] Shrinkage ridge estimators in semiparametric regression models
    Roozbeh, Mandi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 : 56 - 74