PERSISTENCE OF CRITICAL MULTITYPE PARTICLE AND MEASURE BRANCHING-PROCESSES

被引:14
作者
GOROSTIZA, LG
ROELLY, S
WAKOLBINGER, A
机构
[1] UNIV PARIS 06, PROBABIL LAB, CNRS, UA 0224, F-75252 PARIS 05, FRANCE
[2] UNIV LINZ, INST MATH, A-4040 LINZ, AUSTRIA
关键词
D O I
10.1007/BF01300559
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of systems of particles of k types in R(d) undergoing spatiai diffusion and critical multitype branching, where the diffusions, the particle lifetimes and the branching laws depend on the types. We prove persistence criteria for such systems and for their corresponding high density limits known as multitype Dawson-Watanabe processes. The main tool is a representation of the Palm distributions for a general class of inhomogeneous critical branching particle systems, constructed by means of a "backward tree".
引用
收藏
页码:313 / 335
页数:23
相关论文
共 29 条
[1]   STOPPING TIMES AND TIGHTNESS [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1978, 6 (02) :335-340
[2]   GROWING CONDITIONED TREES [J].
CHAUVIN, B ;
ROUAULT, A ;
WAKOLBINGER, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 39 (01) :117-130
[3]  
DAWSON D, 1991, UNPUB MEASURE VALUED
[4]   CRITICAL MEASURE DIFFUSION PROCESS [J].
DAWSON, DA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (02) :125-145
[5]   STABLE HYDRODYNAMIC LIMIT FLUCTUATIONS OF A CRITICAL BRANCHING PARTICLE SYSTEM IN A RANDOM MEDIUM [J].
DAWSON, DA ;
FLEISCHMANN, K ;
GOROSTIZA, LG .
ANNALS OF PROBABILITY, 1989, 17 (03) :1083-1117
[6]   CRITICAL DIMENSION FOR A MODEL OF BRANCHING IN A RANDOM MEDIUM [J].
DAWSON, DA ;
FLEISCHMANN, K .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :315-334
[7]  
DAWSON DA, 1991, MEM AM MATH SOC, V93, P454
[8]   BRANCHING PARTICLE-SYSTEMS AND SUPERPROCESSES [J].
DYNKIN, EB .
ANNALS OF PROBABILITY, 1991, 19 (03) :1157-1194
[9]  
GOROSTIZA L, 1991, 412 J KEPL I MATH BE
[10]  
GOROSTIZA LG, 1990, LECT NOTES MATH, V1426, P275