THE MCMULLEN DOMAIN: SATELLITE MANDELBROT SETS AND SIERPINSKI HOLES

被引:17
作者
Devaney, Robert L. [1 ]
机构
[1] Boston Univ, Dept Math, 111 Cummington St, Boston, MA 02215 USA
来源
CONFORMAL GEOMETRY AND DYNAMICS | 2007年 / 11卷
关键词
McMullen domain; Sierpinski curve; Mandelbrot set; Julia set; rational map;
D O I
10.1090/S1088-4173-07-00166-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe some features of the parameter planes for the families of rational maps given by F-lambda(z) - z(n) + lambda / z(n) where n >= 3, lambda epsilon C. We assume n >= 3 since, in this case, there is a McMullen domain surrounding the origin in the lambda-plane. This is a region where the corresponding Julia sets are Cantor sets of concentric simple closed curves. We prove here that the McMullen domain in the parameter plane is surrounded by infinitely many simple closed curves S-k for k = 1, 2,... having the property that: (1) Each curve S-k surrounds the McMullen domain as well as Sk+1, and the S-k accumulate on the boundary of the McMullen domain as k ->infinity. (2) The curve S-k meets the centers of T-k(n) Sierpinski holes, each with escape time k + 2 where T-k(n) = (n - 2)n(k-1) + 1. (3) The curve S-k also passes through T-k(n) parameter values which are centers of the main cardioids of baby Mandelbrot sets with base period k.
引用
收藏
页码:164 / 190
页数:27
相关论文
共 16 条
[1]   Sierpinski-curve Julia sets and singular perturbations of complex polynomials [J].
Blanchard, P ;
Devaney, RL ;
Look, DM ;
Seal, P ;
Shapiro, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1047-1055
[2]  
Devaney R.L., 2006, TOPOL P, V30, P163
[3]  
Devaney RL, 2006, CONTEMP MATH, V396, P37
[4]   The escape trichotomy for singularly perturbed rational maps [J].
Devaney, RL ;
Look, DM ;
Uminsky, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1621-1634
[5]   Structure of the McMullen domain in the parameter planes for rational maps [J].
Devaney, RL .
FUNDAMENTA MATHEMATICAE, 2005, 185 (03) :267-285
[6]   The McMullen domain: Rings around the boundary [J].
Devaney, Robert L. ;
Marotta, Sebastian M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) :3251-3273
[7]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[8]  
DOUADY A, 1984, PUBL MATH DORSAY
[9]  
MANE R, 1983, ANN SCI ECOLE NORM S, V16, P193
[10]  
McMullen C, 1988, MATH SCI RES I PUBL, V10