THE BLOW-UP BEHAVIOR OF THE HEAT-EQUATION WITH NEUMANN BOUNDARY-CONDITIONS

被引:19
作者
DENG, K
机构
[1] Department of Mathematics, University of Southwestern Louisiana, Lafayette
关键词
D O I
10.1006/jmaa.1994.1450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the blow-up rate for the solution of the heat equation u(t) = u(xx), 0 < x < 1, t > 0 subject to Neumann boundary conditions: u(x)(0, t) = 0, u(x)(1, t) = e(u(1,t)) with convex initial data. (C) 1994 Academic Press, Inc.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 6 条
[1]   QUENCHING ON THE BOUNDARY [J].
FILA, M ;
LEVINE, HA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (10) :795-802
[2]   THE BLOW-UP RATE FOR THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
FILA, M ;
QUITTNER, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (03) :197-205
[3]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[4]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[5]   THE BLOW-UP RATE OF SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
LIU, WX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 77 (01) :104-122
[6]  
LOPEZ-GOMEZ J, 1991, J DIFFER EQUATIONS, V92, P384