REGULARITY OF THE ANOSOV SPLITTING AND OF HOROSPHERIC FOLIATIONS

被引:71
作者
HASSELBLATT, B [1 ]
机构
[1] TUFTS UNIV, DEPT MATH, MEDFORD, MA 02155 USA
关键词
D O I
10.1017/S0143385700008105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
'Bunching' conditions on an Anosov system guarantee the regularity of the Anosov splitting up to C2-epsilon. Open dense sets of symplectic Anosov systems and geodesic flows do not have Anosov splitting exceeding the asserted regularity. This is the first local construction of low-regularity examples.
引用
收藏
页码:645 / 666
页数:22
相关论文
共 42 条
[1]  
Anosov D., 1967, MATH NOTES, V2, P818
[2]  
AVEZ A, 1968, TOPOLOGICAL DYNAMICS, P17
[3]   AFFINE ANOSOV DIFFEOMORPHISMS WITH STABLE AND UNSTABLE DIFFERENTIABLE FOLIATIONS [J].
BENOIST, Y ;
LABOURIE, F .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :285-308
[4]  
Benoist Y., 1992, J AM MATH SOC, V5, P33, DOI DOI 10.2307/2152750.MR1124979
[5]  
Farrell F. T., 1989, AM MATH SOC, V2, P899
[6]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[7]   ASYMPTOTIC STABILITY WITH RATE CONDITIONS [J].
FENICHEL, N .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (12) :1109-1137
[8]   ASYMPTOTIC STABILITY WITH RATE CONDITIONS .2. [J].
FENICHEL, N .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (01) :81-93
[9]   GEODESIC-FLOWS ON MANIFOLDS OF NEGATIVE CURVATURE WITH SMOOTH HOROSPHERIC FOLIATIONS [J].
FERES, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :653-686
[10]   ANOSOV-FLOWS WITH SMOOTH FOLIATIONS AND RIGIDITY OF GEODESIC-FLOWS ON 3-DIMENSIONAL MANIFOLDS OF NEGATIVE CURVATURE [J].
FERES, R ;
KATOK, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :657-670