CONSTANTS OF MOTION IN MODELS OF 2-DIMENSIONAL TURBULENCE

被引:24
作者
HALD, OH [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
关键词
D O I
10.1063/1.861560
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:914 / 915
页数:2
相关论文
共 11 条
[1]   ERGODIC PROPERTIES OF INVISCID TRUNCATED MODELS OF 2-DIMENSIONAL INCOMPRESSIBLE FLOWS [J].
BASDEVANT, C ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1975, 69 (JUN24) :673-688
[2]   STATIONARY STATES OF 2-DIMENSIONAL TURBULENCE [J].
COOK, I ;
TAYLOR, JB .
PHYSICAL REVIEW LETTERS, 1972, 28 (02) :82-&
[3]   INVISCID DYNAMICS OF 2-DIMENSIONAL TURBULENCE [J].
FOX, DG ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1973, 16 (02) :169-171
[4]  
HALD OH, TO BE PUBLISHED
[5]   INERTIAL RANGES IN 2-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1967, 10 (07) :1417-+
[6]   DIRECT-INTERACTION APPROXIMATION FOR A SYSTEM OF SEVERAL INTERACTING SIMPLE SHEAR WAVES [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1963, 6 (11) :1603-1609
[7]   TRIAD-INTERACTION REPRESENTATION OF HOMOGENEOUS TURBULENCE [J].
LEE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1359-1366
[8]   ISOLATING CONSTANTS OF MOTION FOR HOMOGENEOUS TURBULENCE OF 2 AND 3 DIMENSIONS [J].
LEE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1367-1373
[9]  
LORENZ EN, 1960, TELLUS, V12, P243
[10]   ANALYTICAL THEORIES OF TURBULENCE [J].
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1970, 41 :363-&