\ A Survey of High Order Schemes for the Shallow Water Equations

被引:85
作者
Xing, Yulong [1 ,2 ]
Shu, Chi-Wang [3 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
JOURNAL OF MATHEMATICAL STUDY | 2014年 / 47卷 / 03期
基金
美国国家科学基金会;
关键词
Hyperbolic balance laws; WENO scheme; discontinuous Galerkin method; high order; accuracy; source term; conservation laws; shallow water equation;
D O I
10.4208/jms.v47n3.14.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we survey our recentwork on designing high order positivitypreserving well-balanced finite difference and finite volume WENO (weighted essentially non-oscillatory) schemes, and discontinuous Galerkin finite element schemes for solving the shallow water equations with a non-flat bottom topography. These schemes are genuinely high order accurate in smooth regions for general solutions, are essentially non-oscillatory for general solutions with discontinuities, and at the same time they preserve exactly the water at rest or the more general moving water steady state solutions. A simple positivity-preserving limiter, valid under suitable CFL condition, has been introduced in one dimension and reformulated to two dimensions with triangularmeshes, and we prove that the resulting schemes guarantee the positivity of the water depth.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 67 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]   A wave propagation method for conservation laws and balance laws with spatially varying flux functions [J].
Bale, DS ;
Leveque, RJ ;
Mitran, S ;
Rossmanith, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03) :955-978
[3]   Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J].
Balsara, DS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :405-452
[4]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[5]   A POSITIVE PRESERVING HIGH ORDER VFROE SCHEME FOR SHALLOW WATER EQUATIONS: A CLASS OF RELAXATION SCHEMES [J].
Berthon, Christophe ;
Marche, Fabien .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (05) :2587-2612
[7]   A SUBSONIC-WELL-BALANCED RECONSTRUCTION SCHEME FOR SHALLOW WATER FLOWS [J].
Bouchut, Francois ;
Morales de Luna, Tomas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :1733-1758
[8]   WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM [J].
Bryson, Steve ;
Epshteyn, Yekaterina ;
Kurganov, Alexander ;
Petrova, Guergana .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :423-446
[9]   A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations [J].
Bunya, Shintaro ;
Kubatko, Ethan J. ;
Westerink, Joannes J. ;
Dawson, Clint .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (17-20) :1548-1562
[10]   Fourth-order balanced source term treatment in central WENO schemes for shallow water equations [J].
Caleffi, V. ;
Valiani, A. ;
Bernini, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :228-245