UNLEASHING THE VERMIN (VECTORED ROUTE-LENGTH MINIMIZATION)

被引:0
作者
Smarandache, Florentin [1 ]
Bhattacharya, Sukanto [2 ]
机构
[1] Univ New Mexico, Dept Math, Gallup, NM 87301 USA
[2] Univ Queensland, UQ Business Sch, St Lucia, Qld 4072, Australia
关键词
Graph theory; Euclidean space; network connectivity matrix;
D O I
10.1142/S1793005708001148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have posed a simple but interesting graph theoretic problem and posited a heuristic solution procedure, which we have christened as Vectored Route-length Minimization (VeRMin). Basically, it constitutes a re-casting of the classical "shortest route" problem in a strictly Euclidean space. We have presented only a heuristic solution process hoping that a formal proof will eventually emerge as the problem receives wider exposure within mathematical circles.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 9 条
[1]   About the cover: Euler and Konigsberg's bridges: A historical view [J].
Alexanderson, Gerald L. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 43 (04) :567-573
[2]  
Djikstra E. W., 1959, NUMER MATH, V1, P269
[3]  
Euler E., 1766, OPERA OMNIA, V7, P26
[4]  
Euler E., 1766, MEM ACAD SCI BERLIN, V15, P310
[5]  
Ford Lester R., 1962, FLOWS NETWORKS
[6]  
Keefe Patrick Radden, 2006, NEW YORK TIMES 0312
[7]  
Lin Nan, 2017, CONNECTIONS, P1, DOI DOI 10.1108/14691930410550381
[8]  
Yue D., 2007, P 2007 INT C WIR COM, P5514
[9]  
[No title captured]