ON THE BOUNDEDNESS OF SOME CLASSES OF INTEGRAL OPERATORS IN WEIGHTED LEBESGUE SPACES

被引:0
作者
Arendarenko, L. S. [1 ]
Oinarov, R. [1 ]
Persson, L. -E. [2 ]
机构
[1] Eurasian Natl Univ, Dept Fundamental & Applying Math, Fac Mech & Math, Astana, Kazakhstan
[2] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
来源
EURASIAN MATHEMATICAL JOURNAL | 2012年 / 3卷 / 01期
关键词
Hardy type inequalities; boundedness; integral operators; kernels; weighted Lebesgue spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some new Hardy-type inequalities for Hardy-Volterra integral operators are proved and discussed. The case 1 < q < p < infinity is considered and the involved kernels satisfy conditions, which are less restrictive than the usual Oinarov condition.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 8 条
[1]  
Ando T., 1962, P NED AKAD VAN WET, V24, P235
[2]  
Kokilashvili V, 2010, MATH RES DEV, P1
[3]  
Kufner A., 2003, WEIGHTED INEQUALITIE
[4]   Boundedness and compactness of Volterra type integral operators [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (05) :884-896
[5]  
Oinarov R., 1993, P STEKLOV I MATH+, V204, P240
[6]  
OINAROV R., 1992, DOKL AKAD NAUK SSSR+, V319, P291
[7]  
Opic B., 1990, PITMAN RES NOTES MAT, V219
[8]  
Persson L.-E., 2007, HARDY INEQUALITY ITS