Self-Assembly of Colloidal Nanorods Arrays

被引:0
|
作者
Qiao, Fen [1 ]
Wang, Qian [1 ]
He, Zixia [1 ]
Liu, Qing [1 ]
Liu, Aimin [2 ]
机构
[1] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212031, Peoples R China
[2] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
关键词
Colloidal nanocrystals; self-assembly; superlattices; photovoltaic materials;
D O I
10.1142/S0219581X14600291
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, self-assembly of colloidal semiconductor nanocrystals (NCs) have attracted a great interest due to their flexible synthesis with tunable band gaps and shape-dependent optical and electronic properties. In particular, nanorods(NRs) superlattice is receiving considerable attention. Typically, the NRs superlattice is prepared by guiding the process of self-assembly through external forces. In this article, recent development of self-assembly approaches at work in fabricating NRs superlattices was reviewed. Despite those erective self-assembly techniques through external controls to obtain NCs assemblies during deposition were widespread used. But these techniques are time consuming, and cannot get rid of the organic capping insulated molecules surrounding the NCs. So there is still a challenge to guarantee the electron/hole dissociation as well as the charge transport of NCs. Here, thermal annealing method that applies selectivity even in the presence of organic molecules will be adopted to obtain colloidal NRs superlattices, and the self-assembly mechanism of NRs were briefly addressed.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Self-assembly of colloidal particles on different surfaces
    Ulmeanu, M.
    Zamfirescu, M.
    Medianu, R.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 338 (1-3) : 87 - 92
  • [22] Self-assembly of latex particles for colloidal crystals
    Li, Zhirong
    Wang, Jingxia
    Song, Yanlin
    PARTICUOLOGY, 2011, 9 (06) : 559 - 565
  • [23] Vesicular Self-Assembly of Colloidal Amphiphiles in Microfluidics
    He, Jie
    Wang, Lei
    Wei, Zengjiang
    Yang, Yunlong
    Wang, Chaoyang
    Han, Xiaojun
    Nie, Zhihong
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) : 9746 - 9751
  • [24] Self-Assembly of ZnO Nanocrystals in Colloidal Solutions
    Pages, Carole
    Coppel, Yannick
    Kahn, Myrtil L.
    Maisonnat, Andre
    Chaudret, Bruno
    CHEMPHYSCHEM, 2009, 10 (13) : 2334 - 2344
  • [25] Self-Assembly Dynamics of Reconfigurable Colloidal Molecules
    Chakraborty, Indrani
    Pearce, Daniel J. G.
    Verweij, Ruben W.
    Matysik, Sabine C.
    Giomi, Luca
    Kraft, Daniela J.
    ACS NANO, 2022, 16 (02) : 2471 - 2480
  • [26] Oriented Gold Nanorod Arrays: Self-Assembly and Optoelectronic Applications
    Wei, Wenbo
    Bai, Feng
    Fan, Hongyou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (35) : 11956 - 11966
  • [27] Entropy-driven liquid crystalline self-assembly of inorganic nanorods
    Liu Xiao-duo
    Xie Yong
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (07) : 662 - 674
  • [28] Functionalization and Self-Assembly of DNA Bidimensional Arrays
    Garibotti, Alejandra V.
    Perez-Rentero, Sonia
    Eritja, Ramon
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (09): : 5641 - 5651
  • [29] Mesoscopic Arrays from Supramolecular Self-Assembly
    Clair, Sylvain
    Abel, Mathieu
    Porte, Louis
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (44) : 8237 - 8239
  • [30] Self-assembly of chromophoric arrays on conducting polymers
    Bergman, B
    Dillon, P
    Hanks, TW
    ANTEC 2000: SOCIETY OF PLASTICS ENGINEERS TECHNICAL PAPERS, CONFERENCE PROCEEDINGS, VOLS I-III, 2000, : 1463 - 1467