AN ADAPTIVE DIFFUSION SCHEME FOR IMAGE RESTORATION AND SELECTIVE SMOOTHING

被引:16
作者
Prasath, V. B. Surya [1 ]
Singh, Arindama [2 ]
机构
[1] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Image restoration; anisotropic diffusion; scale space; inhomogeneous PDEs; adaptive regularization;
D O I
10.1142/S0219467812500039
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Anisotropic partial differential equation (PDE)-based image restoration schemes employ a local edge indicator function typically based on gradients. In this paper, an alternative pixel-wise adaptive diffusion scheme is proposed. It uses a spatial function giving better edge information to the diffusion process. It avoids the over-locality problem of gradient-based schemes and preserves discontinuities coherently. The scheme satisfies scale space axioms for a multiscale diffusion scheme; and it uses a well-posed regularized total variation (TV) scheme along with Perona-Malik type functions. Median-based weight function is used to handle the impulse noise case. Numerical results show promise of such an adaptive approach on real noisy images.
引用
收藏
页数:18
相关论文
共 35 条
[11]   Comparison of edge detectors - A methodology and initial study [J].
Heath, M ;
Sarkar, S ;
Sanocki, T ;
Bowyer, K .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1998, 69 (01) :38-54
[12]   ADAPTIVE MEDIAN FILTERS - NEW ALGORITHMS AND RESULTS [J].
HWANG, H ;
HADDAD, RA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (04) :499-502
[13]   Total variation based convex filters for medical imaging [J].
Keeling, SL .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 139 (01) :101-119
[14]   The Perona-Malik paradox [J].
Kichenassamy, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) :1328-1342
[15]   The Perona-Malik method as an edge pruning algorithm [J].
Kichenassamy, Satyanad .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) :209-219
[16]   THE STRUCTURE OF IMAGES [J].
KOENDERINK, JJ .
BIOLOGICAL CYBERNETICS, 1984, 50 (05) :363-370
[17]  
Kusnezow W., 2007, LETT COMPUT VIS IMAG, V6, P22, DOI DOI 10.5565/rev/elcvia.146
[18]   THEORY OF EDGE-DETECTION [J].
MARR, D ;
HILDRETH, E .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1980, 207 (1167) :187-217
[19]  
Marr David, 1982, VISION COMPUTATIONAL
[20]   Selection of optimal stopping time for nonlinear diffusion filtering [J].
Mrázek, P ;
Navara, M .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 52 (2-3) :189-203