AN ADAPTIVE DIFFUSION SCHEME FOR IMAGE RESTORATION AND SELECTIVE SMOOTHING

被引:16
作者
Prasath, V. B. Surya [1 ]
Singh, Arindama [2 ]
机构
[1] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Image restoration; anisotropic diffusion; scale space; inhomogeneous PDEs; adaptive regularization;
D O I
10.1142/S0219467812500039
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Anisotropic partial differential equation (PDE)-based image restoration schemes employ a local edge indicator function typically based on gradients. In this paper, an alternative pixel-wise adaptive diffusion scheme is proposed. It uses a spatial function giving better edge information to the diffusion process. It avoids the over-locality problem of gradient-based schemes and preserves discontinuities coherently. The scheme satisfies scale space axioms for a multiscale diffusion scheme; and it uses a well-posed regularized total variation (TV) scheme along with Perona-Malik type functions. Median-based weight function is used to handle the impulse noise case. Numerical results show promise of such an adaptive approach on real noisy images.
引用
收藏
页数:18
相关论文
共 35 条
[1]   SIGNAL AND IMAGE-RESTORATION USING SHOCK FILTERS AND ANISOTROPIC DIFFUSION [J].
ALVAREZ, L ;
MAZORRA, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :590-605
[2]  
[Anonymous], 1998, IEEE T IMAGE PROCESS
[3]  
Aubert G., 2006, APPL MATH SCI, V147
[5]   Gaussian-based edge-detection methods - A survey [J].
Basu, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2002, 32 (03) :252-260
[6]  
Brezis H., 1973, LECT NOTES MATH
[8]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[9]   Are edges incomplete? [J].
Elder, JH .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 34 (2-3) :97-122
[10]  
Giusti F., 1984, MONOGRAPHS MATH, V80