ON THE GEOMETRY OF LIE-ALGEBRAS AND POISSON TENSORS

被引:25
作者
CARINENA, JF
IBORT, A
MARMO, G
PERELOMOV, A
机构
[1] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR,E-28040 MADRID,SPAIN
[2] MOSCOW INST THEORET & EXPTL PHYS,117259 MOSCOW,RUSSIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 22期
关键词
D O I
10.1088/0305-4470/27/22/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric programme to analyse the structure of Lie algebras is presented with special emphasis on the geometry of linear Poisson tensors. The notion of decomposable Poisson tensors is introduced and an algorithm to construct all solvable Lie algebras is presented. Poisson-Liouville structures are also introduced to discuss a new class of Lie algebras which include, as a subclass, semi-simple Lie algebras. A decomposition theorem for Poission tensors is proved for a class of Poisson manifolds including linear ones. Simple Lie algebras are also discussed from this viewpoint and lower-dimensional real Lie algebras are analysed.
引用
收藏
页码:7425 / 7449
页数:25
相关论文
共 23 条
[1]  
ALEKSEEVSKY DV, 1993, CERNTH698493 PREPR
[2]   POISSON STRUCTURES - TOWARDS A CLASSIFICATION [J].
GRABOWSKI, J ;
MARMO, G ;
PERELOMOV, AM .
MODERN PHYSICS LETTERS A, 1993, 8 (18) :1719-1733
[3]  
Jacobson N., 1962, LIE ALGEBRAS
[4]  
KOSZUL JL, 1985, MATH HERITAGE E CART, P257
[5]  
Lichnerowicz A., 1977, J DIFFER GEOM, V12, P253
[6]  
Lie S., 1888, THEORIE TRANSFORMATI
[7]   ON QUADRATIC POISSON STRUCTURES [J].
LIU, ZJ ;
XU, P .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 26 (01) :33-42
[8]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[9]   LIOUVILLE DYNAMICS AND POISSON BRACKETS [J].
MARMO, G ;
SALETAN, EJ ;
SIMONI, A ;
ZACCARIA, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (04) :835-842
[10]  
Mubarakzyanov G. M., 1963, IZV VYSSH UCHEBN ZAV, V34, P99